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1    Introduction 

1.1    Executive Summary. 

The primary objective of this project has been to develop a new programming 
language, compiler and programming environment, called pC++, that would 
be based on a simple extension to C++ to support the development of software 
for Massively Parallel Processing (MPP) computer systems. More specifically, 
the tool should support: 

• a platform for parallel object-oriented software capable of running without 
modification on all commercial Multiple-Instruction-Multiple-Data(MIMD) 
systems; 

• an interface to Single Program Multiple Data (SPMD) libraries such as 
ScaLapack++, A++ and POOMA; 

• an interface to High Performance Fortran (HPF); 

• an interface to control-parallel C++-based languages such as CC++; 

• a way to exploit parallel I/O systems and persistent object databases; and 

• a complete programming environment including all the tools that users of 
conventional C++ systems expect, as well as tools for parallel performance 
analysis and debugging. 

We do not think that pC++, or other object-oriented parallel programming 
languages, should be viewed as replacements for Fortran 90 or HPF. Rather, 
object-oriented parallelism should be used to express those types of parallelism 
that cannot easily be expressed in these languages. 

pC++ is based on a concurrent aggregate model of data parallelism. This 
means that a pC++ program consists of a single main thread of control from 
which parallel operations are applied to collections of objects. Each object in 
a collection is an instance of an element class. pC++ has two basic extensions 
to the C++ language: a mechanism to describe how operations can be invoked 
over a set of objects in parallel, and a mechanism to refer to individual objects 
and subsets of objects in a collection. 

pC++ has been implemented on a wide range of commercially available 
parallel systems including the Thinking Machines CM-5, the Intel Paragon, the 
SGI PowerChallenge, the IBM SP-2 and the Cray T3-D. Our primary experi- 
ence with testing the pC++ ideas on large scale problems has come from our 
involvement with the NSF Grand Challenge Cosmology Consortium GC3. This 
report describes some of these applications. 

One of the most interesting by-products of the pC++ project has been a 
language preprocessor toolkit called Sage++. This toolkit has been extended in 



a variety of ways and is used for a large number of applications, including the 
TAU programming environment described in the next section of this report. 

Most of the key ideas and technology developed for pC++ has been inte- 
grated in the DARPA HPC++ project which is described in the technology 
transfer section of this report. 

1.1.1    Project Accomplishments 

In this section we describe the three primary technical accomplishments of this 
project: the pC++ language and compiler, the Sage++ compiler technology 
and the TAU programming environment. 

The pC++ Compiler and Library Effort The final version of pC++ was 
made available in Q4 of 1996 and it can be access by the World Wide Web at 
ftp://ftp.extreme.indiana.edu/pub/sage/ in file pc++sage++2.0.tar.Z. This file 
contains the entire distribution of all the software described here. In addition, a 
Web based user's guide is available at http:// www.extreme. indiana.edu/sage/ 
pcxx-ug/pcxx_ug.html. 

The compiler consists of a pC++ to C++ translator that works with any con- 
ventional C++ system and our parallel runtime library TULIP. In other words, 
pC++ programmers write pC++ parallel application code and the translator 
converts their program files to a set of C++ program files that make calls to 
our special parallel execution library. The system automatically compiles the 
C++ programs and links the libraries. 

pC++ programs are completely portable. That is, if a program is written 
with pure pC++ it will compile for any of the parallel architectures supported 
by the last release (SGI, Cray T3D, IBM SP2, Intel Paragon, TM CM-5). Fur- 
thermore the performance of a well tuned pC++ program matches HPF and 
Fortran plus message-passing. 

Example Performance Results pC++ has been tested on a number of ex- 
amples. However, one of the most impressive examples was a simulation of 
the collision of two Galaxies involving an N-Body computation with 40 mil- 
lion bodies. This project was awarded the prize for "Best Demonstration of 
Heterogeneous Computing" at the I-Way demonstration at Supercomputing 95. 

The core of this computation was a parallel simulation designed as part 
of the GC3 NSF Grand Challenge Project. The simulation, known as a Self 
Consistent Field (SCF) computation was written in pC++, CM Fortran and 
Fortran+MPI. For the large simulation the pC++ and Fortran+MPI versions 
were linked together over two supercomputers with 512 processors each. To 
illustrate the scalability of pC++ performance we tested the pC++ SCF code 
on a smaller example data set on a number of different machines. 

Our experiments with the pC++ SCF code were conducted on a Thinking 
Machines CM-5, an Intel Paragon, an SGI Power Challenge, an IBM SP-2, and 



Platform 
Number of Processors 

8 16 32 64 
Cray T3D 223.0 115.3 

Intel Paragon 667.3 332.5 168.5 
IBM SP-2 186.9 103.5 

Power Challenge 116.9 58.6 
CM-5 (pC++) 45.8 

CM-5 (CM Fortran) 50.3 

Table 1: SCF code execution time, in seconds, for evolving a 51,200 particle 
stellar system for 100 time steps. 

a Cray T3D. For comparison, we also ran the CM Fortran SCF code on the 
CM-5. 51,200 particles were used for the simulation. The system was allowed 
to evolve for 100 time steps. The results of these experiments are listed in the 
table below for the five different platforms and three configurations of numbers 
of processors. (In some cases, only smaller numbers of processors were available. 
In other cases, only 64 processors were available.) 

The Sage++ Compiler Tools The Sage++ compiler tool kit is one of the 
most important technology spin-off products of this contract. It is now widely 
used in university research as well as commercial products (see technology trans- 
fer.) 

Sage++ consists of a set of tools to translate Fortran, C++, pC++ and 
Corba IDL programs into a C++ object tree form. It is then possible for a 
programmer to write a tool that can read this object tree representation, analyze 
it, transform it, and then translate the modified object tree back into the original 
source language. The object tree representation of a program contains complete 
information about program variables and types as well as all statements and 
expressions. Consequently, tools that are built with Sage++ have complete 
access to the semantics of the program and can modify them in any way. 

The types of applications that have been built with Sage++ include the 
following major efforts. 

• the pC++ compiler. 

• the Argonne Fortran-M parallel programming system. 

• the INRIA (France) Fortran-S parallel Fortran system. 

• the TAU programming environment (see below). 

• the Argonne ADIC C program Automatic program differentiation system. 
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• the Syracuse HPF compiler. 

• the NASA AIMS parallel performance tools system. 

• the PARDIS parallel CORBA system. 

All of these systems are currently in public distribution. In addition, IBM 
has licensed the Sage++ software for use in internal research projects and two 
small companies have acquired licenses to distribute sage as part of commercial 

products. 
The complete source code directory for Sage++ can be found in the pC++ 

distribution pc++sage++2.0.tar.Z described in the previous section. In addi- 
tion, a complete, interactive users guide is available on line at http://www.extreme.indiana.edu/sage/sagexx. 

html/sagexx_ug_toc.html. 
However, two years of use has demonstrated to us the need for a number 

of important improvements in Sage. In collaboration with Caltech, we have 
undertaken a complete redesign of Sage++. The new system, Sage2 will be 
based on a commercial C++ front-end provided by Edison Design Group, Inc. 
(EDG). We expect that the resulting system will be a standard for the design of 
programming tools for C++, Fortran, Java and CORBA IDL. This is discussed 
in greater detail in the Technology Transfer section of this report. 

The Tulip Runtime System Tulip a parallel run-time system (RTS) that 
is used as part of the pC++ parallel programming language. The RTS has 
been implemented on a variety of scalable, MPP computers including the IBM 
SP2, Intel Paragon, Meiko CS2, SGI Power Challenge, and Cray T3D. This 
system differs from other data-parallel RTS implementations; it is designed 
to support the operations from object-parallel programming that require re- 
mote member function execution and load and store operations on remote data. 
The implementation is designed to provide the thinnest possible layer atop the 
vendor-supplied machine interface. That thin veneer can then be used by other 
run-time layers to build machine independent class libraries, compiler back ends, 
and more sophisticated run-time support. Tulip is now the standard runtime 
system being used in pC++ and it is also the basis for the HPC++ runtime 
layer. 

Tulip is now a major component of the DOE ASCI effort (See Technology 
Transfer section below.) 

1.1.2    The Tau Program Analysis Environment 

TAU (Tuning and Analysis Utilities) is a visual programming and performance 
analysis environment for pC++. Elements of the TAU graphical interface repre- 
sent objects of the pC++ programming paradigm: collections, classes, methods, 
and functions. These language-level objects appear in all TAU utilities. TAU 



uses the Sage++ toolkit as an interface to the pC++ compiler for instrumenta- 
tion and accessing properties of program objects. TAU is also integrated with 
the pC++ runtime system for profiling and tracing support. TAU is imple- 
mented in C and C++ and is using Tcl/Tk for graphics. 

The TAU tools are implemented as graphical hypertools. While they are 
distinct tools, they act in concert as if they were a single application. Each tool 
implements some well-defined tasks. If one tool needs a feature of another one, 
it sends a message to the other tool requesting it (e.g., display the source code 
for a specific function). This design allows easy extensions. 

We tried to make the TAU tool-set as user-friendly as possible. Many ele- 
ments of the graphical user interface are analogous to links in hypertext systems: 
clicking on them brings up windows which describe the element in more detail. 
This allows the user to explore properties of the application by simply interact- 
ing with elements of most interest. The TAU tools also support global features. 
If a global feature is invoked in any of the tools, it is automatically executed 
in all currently running TAU tools. Examples of global features include select- 
function, select-class, and switch-application. TAU also includes a full hypertext 
help system. 

The components of TAU include 

• TAU (TAU Main Control Window) It allows you to start the other tools, 
provides on-line, hyper-text help and some global functionality like loading 
another .dep file (the internal program tree form for pC++ programs). 

• COSY (COmpile manager Status displaY) This tool provides a user- 
friendly and convenient way of compiling and executing pC++ programs. 
Through a graphical interface, the user can first select the parallel machine 
on which the given application is to be compiled and run. Parameters and 
options for the compilation process (e.g., compile for tracing) and for the 
program run (e.g., activated event classes for trace recording) can be cho- 
sen through pull-down menus. Cosy automatically connects, if necessary, 
to the remote machine, executes the appropriate commands, and displays 
the resulting output in a scrollable window. 

• FANCY (File ANd Class displaY) lets you browse through the files and 
classes used in the source text of the application, and lets you display the 
source text of functions, methods, or classes. 

• CAGEY (CA11 Graph Extended displaY) lets you browse through the 
static callgraph of the application. 

• CLASSY (CLASS hierarchY browser) displays the class hierarchy defined 
in the current user application. 

• RACY (Routine and data ACcess profile displaY) is a parallel profile data 
viewer. After compiling an application for profiling and running it, racy 
lets you browse through the function and collection profile data generated. 



• SPEEDY (Speedup and Parallel Execution Extrapolation DisplaY) is a 
graphical interface to the pC++ simulation environment XtraP. It allows 
performance analysis and extrapolation of pC++ programs based on ex- 
ecution traces. 

• BREEZY (BReakpoint Executive Environment for visualization and data 
displaY) is for breakpoint-based program analysis. Breezy allows a user 
to control the execution of a pC++ program and to view the parallel 
program collection data during the execution, the essential functions of a 
parallel debugger. The execution is controlled by manipulating program 
breakpoints. At these breakpoints, the program data can be displayed in 
a text window or visualized by a compatible visualization tool. 

• CRAFTY (ContRol flow And FuncTion displaY) is a control flow graph 
browser. The nodes of the graphs (conditionals and basic blocks) contain 
the list of functions and methods which are called from this block. This 
tool will also allow the graphical specification of instrumentation points 
for profiling and tracing. 

Tau source code is included with the current distribution of pC++. Com- 
plete tutorial and user guide information is available from the pC++ distribution 
and on line at http://www.cs.uoregon.edu/research/paracomp/proj/tau/. 

1.2    Technology Transfer 

There have been four major components to pC++ technology and all three are 
being moved into wider distribution and evolution. The first component is the 
pC-t—I- language. The transition from pC++ to a working HPC+-1- standard 
has been a long goal of this effort and it is now a reality. Because the C++ 
language has evolved so much in the past year, it is now possible to do more 
in C++ without many of the language extensions that exist in pC++. This 
has simplified the design of HPC++ considerably. In fact, the primary data 
structure of pC++, the collection class type, is now seen as a Parallel Standard 
Library container class. We are in the process of converting many of the existing 
pC++ applications to the HPC++ syntax. The most important of these are 
applications that are part of the NSF NCSA Alliance which is funding the effort 
to make pC++/HPC++ more widely used there. 

The second component of technology is the Sage++ compiler toolkit that 
was built for pC++. The Sage++ system has now been licensed by IBM corpo- 
ration for internal research purposes. It has also been licensed by NASA Ames 
research laboratories for distribution as part of their Ames performance analysis 
tools. In addition, Amerinex corporation has licensed Sage++ for commercial 
distribution as a component in their product line. Sage2 development is now 
very active as part of the HPC++ project and it should be released by the 



end of 1997. We expect that Sage2 will be even more widely used because it 
incorporates an existing, commercial quality language parser for C++. 

The third component of our technology transfer is the Tulip runtime system. 
Tulip has now been adopted by the DOE ASCI program as one of the core 
runtime kernels for the ASCI Blue Mountain system. Consequently, Tulip will 
be an important component in software design for the stockpile maintenance 
project. Because of this key role Tulip will play, Los Alamos has taken over the 
maintenance of Tulip and is working with us on the integration of Tulip into 
HPC++. 

The fourth component of the technology is the TAU programming environ- 
ment tools. TAU has now been integrated with the Portland Group Inc, HPF 
compiler and will be the standard foundation for HPC++ tools. In fact the first 
HPC++ versions of TAU are currently in Beta test mode. 

1.3    The Remainer of This Report 

The remainder of this report consists of two chapters which provide a de- 
tailed discussion and analysis of the two primary deliverable technologies of this 
project: pC++ and the associated performance analysis toolkit TAU. These 
two chapters have been designed to be read as stand-alone documents. How- 
ever, they are deeply connected. As an illustration of the use of PC++ we 
have included in the first chapter a detailed solution of a problem known as the 
polygon overlay problem. In the TAU chapter, we use this same computation 
as part of our analysis of the effective use of the TAU tools. The TAU chapter 
concludes with a assessment of the system at the time of the project completion. 
It should be noted that TAU continues to evolve and later versions now address 
many of the issues that are discussed in the assessment section. 

A complete bibliography of related work appears at the end of this report. 
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2    pC++ 
pC++ is a data-parallel extension to C++ that is based on the concept of collec- 
tions and concurrent aggregates. It is similar in many ways to newer languages 
like ICC++, Amelia and C** in that it is based on the application of func- 
tions to sets of objects. However, it also allows functions to be invoked on each 
processor to support SPMD-style libraries and it is designed to link with HPF 
programs. pC++ currently runs on almost all commercial massively-parallel 
computers, and is being used by the NSF Computational Grand Challenge Cos- 
mology Consortium to support simulations of the evolution of the universe. 
In this chapter we describe the language and its performance on a variety of 
problems. 

2.1    Introduction 
The goal of the pC++ project was to design a simple extension to C++ for 
parallel programming that provides: 

• a platform for parallel object-oriented software capable of running without 
modification on all commercial MIMD systems; 

• an interface to Single Program Multiple Data (SPMD) libraries such as 
ScaLapack++ [8], A++ [21] and POOMA ; 

• an interface to High Performance Fortran (HPF) [19]; 

• an interface to control-parallel C++-based languages such as CC++ [7] ; 

• a way to exploit parallel I/O systems and persistent object databases; and 

• a complete programming environment including all the tools that users of 
conventional C++ systems expect, as well as tools for parallel performance 
analysis and debugging. 

We do not think that pC++, or other object-oriented parallel programming 
languages, should be viewed as replacements for Fortran-90 or HPF. Rather, 
object-oriented parallelism should be used to express those types of parallelism 
that cannot easily be expressed in these languages. To accomplish this, pC++ 
exploits the two definining characteristics of object-oriented design: encapsula- 
tion and inheritance. 

pC++ is based on a concurrent aggregate model of data parallelism. This 
means that a pC++ program consists of a single main thread of control from 
which parallel operations are applied to collections of objects. Each object in 
a collection is an instance of an element class. pC++ has two basic extensions 
to the C++ language: a mechanism to describe how operations can be invoked 
over a set of objects in parallel, and a mechanism to refer to individual objects 
and subsets of objects in a collection. 
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pC++ has been implemented on a wide range of commercially available 
parallel systems; we describe its performance on such platforms later in this 
chapter. Other examples of pC++ programs and performance can be found in 
[12, 13,10, 4,14]. Our primary experience with testing the pC++ ideas on large 
scale problems has come from our involvement with the NSF Grand Challenge 
Cosmology Consortium GC3. This chapter describes some of these applications. 
We also discuss two libraries that support parallel I/O and persistent objects in 
pC++ programs. 

One of the most interesting by-products of the pC++ project has been a 
language preprocessor toolkit called Sage++ [3]. This toolkit has been extended 
in a variety of ways and is used for a large number of applications, including 
the TAU programming environment described in the TAU Chapter. 

2.2    History 
In 1984, the parallel programming research group at Indiana University, working 
with the Center for Supercomputing Research and Development (CSRD) at the 
University of Illinois, developed an extension to the C programming language 
called Vector Parallel C (VPC) [11]. VPC used parallel loops for spawning 
new. threads of control, a vector notation similar to Fortran-90 for data-parallel 
operations, and assumed a shared memory model of execution. 

By 1986, we had become interested in distributed memory multicomputers, 
and decided to build a new system based on object-oriented design ideas. Our 
goal was to implement parallel control mechanisms by applying member func- 
tions to sets of objects. The first problem to be solved was how to describe a 
generic set of objects in C++. At the time, the C++ template mechanism was 
not yet a complete proposal to the C++ standards committee, although early 
public documents such as [31] guided our thinking. 

Even had they existed, templates would not have solved all of our problems. 
To see why, consider the following definition of a set of objects of type T derived 
from a templatized container class Set: 

Set<T> S; 

Suppose that the set element type T takes the form: 

class T { 
public: 
void fooO; 

}; 

Our desire was to be able to apply the member foo() to the entire set S in 
parallel with the expression S.foo(). Unfortunately, this could not be done 
using the standard overloading and inheritance mechanisms of C++. Further- 
more, because there were no implementations of templates in C++ at that 
time, we decided to add an extension to pC++ to represent a type of class 
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called a collection. Each collection had one built-in "template" parameter called 
Element Type. To simplify the compiler, we put the mechanisms for managing 
a distributed set of elements into a library called the SuperKernel collection. 
The way in which these collection classes are used is described in detail in the 
next section. 

About the time that our first implementation of pC++ for shared-memory 
multiprocessors was complete, the HPF Forum was being established. Because 
HPF was also a data-parallel programming language, we were convinced that we 
needed to base the allocation and data distribution mechanisms for collections 
on distributed memory systems on the HPF model. Such a design would help 
make it possible to share distributed data structures with HPF implementations 
(although this idea has never been tested). In retrospect, we have realized that, 
for most users, a standard interface to single-node Fortran-90 is more important 
than compatibility with HPF. This is because the majority of large pC+-l- ap- 
plications that are in production use are written with Fortran subroutines that 
have been scavenged from older sequential and vector versions of the application. 

In 1992, ARPA provided the support for a complete redesign of pC+-|- and a 
public release. The final version of pC++ (version 2.0) will be released in early 
1996. This chapter describes this new version of the language. 

2.3    Overview of pC++ Version 2.0 

pC++ was designed to work on both multiprocessors and multicomputers. We 
use the HPF model to describe the way in which an array-like data structure 
can be distributed over the memory hierarchy of a parallel computer. To build 
a collection of objects from some class type T, which is called an element class1 

in pC++, one needs a distribution and an alignment object. The distribution 
object defines a grid and a mapping from the grid to the physical processors 
on a parallel machine. The alignment object specifies the shape, size, and the 
mapping of the element objects to the grid points. In addition, a processor 
object of type Processors is needed to represent the set of processors available 
to use. For example: 

Processors P; 

Distribution D(100, &P, BLOCK); 

Align A(20,   " [ALIGN(X[i] ,  D[i+10] )] ") ; 

creates an one-dimensional grid of a size of 100 which is mapped to the processors 
of the machine by blocks. If there are 20 processors, grid positions 0 through 
4 are mapped to processor 0, positions 5 through 9 are mapped to processor 
1, etc. The alignment object aligns the logical vector X[0:19] with the grid 
positions D [10:29] . 

Given a distribution, an alignment and the class type of the element objects, 
it is easy to build a collection. The starting point is the SuperKernel collection 

1In its current implementation, elements of a collection must be of the same type. 
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provided by the pC++ collection library. This collection is the base type for 
all other collections. It builds arrays of element objects and provides a global 
name space for the element objects. Thus, the declaration: 

SuperKemeKT> MyCollection(&D,  &A); 

creates a collection called MyCollection, consisting of a set of 100 objects of 
type T distributed in the manner described above. 

The most important feature of a collection is the ability to apply a function 
in parallel across all the element objects. For example, if T is defined as: 

class T{ 

public: 

void foo(); 

int x, y, z; 

float bar(T &); 

}: 

a parallel application of f oo() to all elements of MyCollection would take the 
form: 

MyCollection.foo(); 

In the case above, f oo() has a void result, so the expression MyCollection. foo () 
has a void result as well. However, pC+4- extends the type system so that, for 
example, if x is a type int data member of the element class, then MyCollection. x 
is an object of type SuperKernel<Int>, where Int is a library class with one 
integer value. The expression: 

MyCollection.x = 2*MyCollection.y + MyCollection.z; 

is therefore a parallel computation involving element-wise multiplication, addi- 
tion and assignment on the members of each element of the collection. 

Similarly, if t is of type T the expression MyCollection.bar(t) applies 
bar (t) to each element of the collection. The result is of type SuperKerneKFloat>. 
Also, if C is another collection whose size is the same as MyCollection and whose 
element type is T, the expression 

MyCollection.bar(C) 

will apply bar () to the ith element of MyCollection using the ith element of C 
as an argument. 

It is often the case that an operation must be applied to a subset of the 
elements of a collection. pC++ extends the Fortran-90 vector notation so that 
descriptors of the form base:end:stride can be used to select elements from 
a collection. For example: 

MyCollection[0:50:2] .fooQ 
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will apply f oo () to the first 25 even numbered elements of the collection. 
To access an individual member of a collection, one can use the overloaded 

operator () which returns a global pointer to an element, i.e. a pointer that can 
span the entire address space of a distributed-memory machine. For example: 

MyCollection(i) 

returns a global pointer to the ith element in the collection. In this way, any 
object can have a global address. The function call: 

MyCollection(i)->fooO; 

is a remote invocation. It sends a message to the processor that contains the zth 

element of MyCollection, and a thread on that processor executes the function2 

Programmers often need to create specialized collections with properties 
appropriate for their particular applications. The task of building a new derived 
collection is almost the same as building a derived class in C++. The definition 
of a collection derived from SuperKernel takes the form: 

Collection MyCollectionType:   SuperKernel  { 
public: 
// Public data members duplicated on each processor. 
// Public member functions  executed in parallel on all processors. 

MethodOfElement: 
// Data members  and member functions here are added to 
// the element  class. 

}; 

There are two types of data and member functions in a collection definition. 
Data and functions labeled as MethodOf Element represent new data members 
and functions that are to be added to each element class. Such member func- 
tions are invoked and executed in the same way that ordinary element class 
member functions are invoked and executed. Data members not labelled as 
MethodOfElement are defined once on each processor; functions not labeled 
MethodOf Element are invoked in "SPMD" mode. This is similar to the extrin- 
sic function execution model in HPF. More precisely, pC++ has a single sequential 
thread of control for all operations other than collection member function calls. 
Collections are data aggregates that may be distributed over multiple address 
spaces. Invoking a collection member function that is not a MethodOfElement 
member causes a thread of control in each address space to execute the function. 
These new threads of execution are independent and run in parallel. The pro- 
grammer is free to embed explicit communication and syncronization in these 
functions. The functions are barrier synchronized before control is returned 
to the single sequential main thread. On distributed memory systems, where 
there is one processor per address space, the number of threads that are run- 
ning concurrently in a non-MethodOfElement call is one per processor.   For 

2Remote invocation of this kind is part of pC++ 2.0, and is not part supported by the 
current pC++ 1.0 distribution. 
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MethodOf Element function calls there is one function invocation per element in 
the collection. 

2.3.1    pC++ Run-Time System 

pC++ is extremely portable. It currently runs on the Cray T3D, IBM SP2, In- 
tel Paragon, Meiko CS-2, SGI Power Challenge, TMC CM5, Convex Exemplar, 
and networks of workstations. The key to this portability is the simple execu- 
tion model and layered run-time system. The first run-time layer is machine 
independent and is defined by the pC-t—f- compiler (source-to-source translator). 
The compiler generates calls to the C++ class library whose interface is defined 
in kernel. h. There are two versions of this class library layer: one for SPMD 
execution and one for fork/join thread-based execution. 

For distributed memory machines, SPMD execution is used, and the pC++ 
compiler converts parallel invocations such as: 

MyColl.fooO; 

into loops over the local collection elements using the "owner computes" rule as 
shown below. First the data type 

MyCollection<T>  MyColK . . .) ; 

is converted by the compiler to an explicit C++ class 

MyCollection.T MyColK. . .) ; 

and the function invocation is converted into the loop 

for  (i= MyColl->FirstLocal();   i >= 0;   i = MyColl->NextLocal(i)) 
HyColl(i)->foo(); 

pcxx_Barrier(); 

The generated loop uses the overloaded () operator, provided by the pC++ 
class library, to find the ith collection element. After each processor has applied 
foo() to its local elements, a barrier synchronization between processors in 
initiated. 

Shared memory machines can use the SPMD model shown above, or the 
pC++ compiler can generate a special thread-based run-time interface. More 
specifically, the loop above now takes the following abstract form. Let us assume 
that there are k processors available 

fork_threads(k);   // create or allocate k threads of  execution 
// each thread executes the following 
int s = MyColl->size(),  me = my_thread_id(); 
for(int i =  (s/k)*me;   i < min(s,   (s/k)*(me+l));   i++) 

MyColl(i)->foo(); 
join_threads(k);   // wait for all thread to reach this point 

// and terminate or suspend all but  one. 
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The abstraction of work is sufficiently general to permit many different thread 
packages. An implementation could create a new thread for each element, i.e. 
let k = s, or use a set of k persistent threads. 

2.3.2    Tulip 

The next portion of the run-time system is the low-level machine-dependent 
layer, called Tulip. Tulip describes an abstract machine, and defines standard 
interfaces for basic machine services such as clocks, timers, remote service re- 
quests, and data movement. Tulip has a C interface, and has no knowledge of 
pC++ or the class library, which are built on top of Tulip. Therefore, wherever 
Tulip can be ported, pC+-f- can run. 

Tulip has several basic abstractions: 

• Context: An address space. A Unix process on a symmetric multiprocessor 
would be a single context. Lightweight threads share a context. A machine 
such as the SP2 can support several contexts per node. 

• LocalPointer. A simple, untyped, memory address. A LocalPointer is 
valid only within the Context it was created. 

• GlobalPointer. The tuple (Context, LocalPointer). A GlobalPointer uniquely 
identifies any memory address in the computational hardware. 

Those abstractions are used in the following basic functions: 

tulip_Put(tulip_GlobalPointer_t  destination,   char »source, 
int length,  tulip_ACK_t  »handle); 

tulip_Get(char »destination,   tulip_GlobalPointer_t  source, 
int length,  tulip_ACK_t  »handle); 

tulip_RemoteServiceRequest(int   context,   char »buffer, 
int length,  tulip_ACK_t  »handle); 

Put () and Get () simply move data between contexts. They are very similar 
to memcpy (), except destination and source are global pointers respectively. Fur- 
thermore, an acknowledge handle is provided so the status of the data transfer 
can be monitored. If the handle is NULL when the function is called, no ac- 
knowledgment is done. The functions are non-blocking, so that they can be 
easily integrated with user-level thread packages. 

The remove service request mechanism provides asynchronous communica- 
tion between contexts. It is particularly useful for bootstrapping, building re- 
mote procedure execution for pC++ (see section Section 2.3), and transmitting 
short control messages to other contexts. 

The basic abstractions and functions are supported on three architectural 
models: shared memory, message passing, and network DMA. 
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The SGI Challenge and Convex Exemplar are examples of shared memory 
machines. The hardware maintains cache and memory consistency, and com- 
munication is done by simply sharing pointers. In this case, Put() and Get() 
need not be used, because those functions move data between contexts. On a 
shared memory machine, there is usually only one context. However, if Put() 
or Get() are used, they are simply a call to memcpyO followed by the TRUE 
acknowledge handle. 

Two examples of message passing machines are the Intel Paragon and IBM 
SP2. Since Put() and Get() are one-sided communication primitives, and do 
not require synchronization, either active messages or polling loops must be used 
to detect when a data movement request arrives. For each Get(), a recv() is 
posted for the anticipated data, then a data request message is sent to the 
remote context (i.e. node). When the sender detects the data request message 
during a message poll, the data is sent to the awaiting recv without a buffer 
copy. Put() uses a similar mechanism, but requires an extra round trip to avoid 
any buffer copies. If the message is sent to the remote context "eagerly", the 
extra round trip latency is not incurred, but the messaging system must copy 
and buffer the data. 

The Meiko CS-2 and Cray T3D are network DMA machines. They are not, 
from the programmers perspective, truly shared memory, since transfers to "re- 
mote" memory must be done through special system calls. On the other hand, 
there is no synchronization or polling required to move data. Consequently 
Get() and Put() can be written as calls to these underlying vendor-supplied 
transport functions. 

For all machines, a polling loop or interrupt must be used to detect a remote 
service request. Currently, Tulip uses a polling loop to detect requests. However, 
as active message layers for machines such as the SP2 become available, Tulip 
will be rewritten to take advantage of fast handlers and eliminate the need for 
polling. 

2.3.3    I/O 

pC++/streams is a library which supports a simple set of high level I/O prim- 
itives on pC++ collections. To illustrate its capabilities, we describe how 
pC+-(-/streams can be used to checkpoint a collection having variable-sized 
elements. 

Assume our application simulates the behavior of particles in three-dimensional 
space. We can model the particles with a one-dimensional distributed array of 
variable-length particle lists, each of which keeps track of the particles in the 
region of the three-dimensional array local to that processor. 

class Position { 
double x, y, z; 
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class ParticleList { 

int numberOfParticles; 

double * mass;        // variable sized 

Position * position;   // arrays 

}; 
Collection DistributedArray { 

updateParticlesO; 

}! 

Processors P; 
Align a(12,"[ALIGN(collection[i],   template [i] )]") ; 
Distribution d(12,  &P,   CYCLIC); 

DistributedArray<ParticleList>  particleArray(&d,&a); 

The programmer can write a function to checkpoint the particleArray collec- 
tion as follows: 

«include  "pc++streams.h" 
void saveParticleArrayO  { 

oStream streamed,   fta,   "myFileOne"); 
stream « particleArray; 
stream.writeO ; 

} 

The first line of saveParticleArrayO defines an output pC++/stream called 
stream, connected to the file myFileOne. The second line inserts the entire 
particleArray collection into the buffers of the stream. The third line causes 
those buffers to be written to the file, using parallel I/O. The file associated with 
the stream is closed automatically when the program block in which the stream 
was declared is exited. The programmer would write a function to restore the 
checkpointed particleArray as follows: 

void loadParticleArray()   { 
iStream streamed,   &a,   "myFileOne"); 
stream.read(); 
stream » particleArray; 

} 

pC++/streams also allows selective I/O on individual fields of collection ele- 
ments: 

stream « particleArray.numberOfParticles; 

pC+-|-/streams supports I/O on collections with complex elements (e.g. variable- 
sized elements, tree-structured elements, etc) by giving the programmer a straight- 
forward mechanism for defining how these data structures are to be read and 
written: stream insertion and extraction functions. A pC++/stream is actually 
a collection of element-streams, one per element of the collection to be written 

19 



from or read into. An insertion or extraction function allows the programmer 
to indicate exactly how data is to be exchanged between a given element-stream 
and its corresponding element. In our example, the programmer would define 
an insertion function for ParticleLists as follows: 

declareStreamInserter(ParticleList  &p)  { 
eltBuf  « p.numberOfParticles; 
eltBuf « arrayCp.mass,  p.numberOfParticles); 
eltBuf « array(p.position,  p.numberOfParticles); 

} 

declareStreamlnserterO is a macro that defines eltBuf, a reference to 
the element-stream. The arrayO macro tells pC++/streams that mass and 
position are dynamically-allocated arrays of size numberOfParticles. Ex- 
traction functions are defined similarly. pC++/streams is described in more 
detail in [16]. 

2.3.4    Persistence 

pC++/persistence is an I/O library supporting persistence for pC++ collec- 
tions. This library is currently implemented using the SHORE persistent object 
system from the University of Wisconsin-Madison [6]. 

Normally, elements of pC++ collections are transitory, i.e., their data dis- 
appears when the program terminates. In order to preserve transitory data, the 
programmer must output that data to a file before the program terminates, us- 
ing either an I/O mechanism supported by the operating system or a higher-level 
library such as pC++/streams. 

pC++/persistence allows programmers to define persistent collections, whose 
elements can contain persistent data in addition to ordinary transitory data. 
The persistent section of each element is automatically preserved across pro- 
gram executions; no application I/O code is required to save or load this data. 
A transaction mechanism is supported, allowing programmers to checkpoint per- 
sistent data with a single line of code that commits a transaction. In addition, 
the persistent part of a collection is concurrently accessible by multiple pC++ 
programs, with no explicit code for communication required. Concurrent access 
to persistent data can allow simplified programming of concurrent computation 
and visualization, computational steering, and modular multi-disciplinary simu- 
lations, since no application code needs to be devoted to I/O or communication 
of the persistent data. 

As an example, we first we define the per-element persistent data using SDL 
(SHORE Data Language). For simplicity, our persistent data will consist of just 
a single long integer per element, called myPersistentLong: 

module MyElement  { 
interface PersistentElementData  { 

public: 
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attribute long myPersistentLong; 

}; 
} 

This SDL specification is processed by the SHORE SDL type compiler, inform- 
ing SHORE of the structure of the persistent part of our elements. 

We next define an element class MyElement in ordinary pC++. We derive 
it from the class PersistentElement, and define an ordinary transient data 
member (myTransientLong) in the usual way: 

#include  "PersistentElement.h" 

class MyElement   :  public PersistentElement{ 
public: 
long myTransientLong; 
void P_initialize(); 
void helloO ; 

}; 

The class PersistentElement contains a member P through which the persis- 
tent part of each element is accessed: 

void MyElement::hello()   { 
printfC  Hello world:   */.ld '/.Id", 

myTransientLong,   P->myPersistentLong); 

} 

The function P_initialize(), defined within MyElement, gives the application 
programmer a mechanism for initializing the persistent part of each element. 
P_initialize() is called immediately after the persistent part of each element 
is first created. 

void MyElement::P_initialize()   { 
P. update 0->myPersistentLong = 1234; 

} 

The call to P.update() above informs pC++/persistence that the persistent 
part of the element is to be modified, rather than just accessed. 

A persistent collection is defined just like an ordinary collection, except that 
it is derived from PersistentCollection: 

»include "PersistentCollection.h" 

Collection MyCollection: public PersistentCollection { 

public: 

MyCollection(Distribution *T, Align *A, 

char *persistentCollectionName); 

MethodOfElement: 

virtual void helloO; 

}; 
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MyCollection::MyCollection(Distribution *T, Align *A, 
char *persistentCollectionName) 

: PersistentCollection(T, A, persistentCollectionName) {} 

When the programmer instantiates the collection X below, the string myPersistentCollectionName 
is passed into the collection constructor, and then to PersistentCollection. 
This string identifies a particular database of persistent elements to be associ- 
ated with the collection. 

void Processor_Main(int arge, char **argv){ 

Processors P; 
Distribution T(SIZE, &P, BLOCK); 

Align A(SIZE,"[ALIGN(V[i], T[i])]"); 
MyCollection<MyElement> X(&T, &A, "/myPersistentCollectionName"); 

beginTransactionO ; 

X.helloO; 
conunitTransactionO ; 

} 
Changes to the persistent part of a collection must be made within a transaction, 
initiated by beginTransactionO. These changes do not become permanent 
and are not visible to other applications until the transaction is committed 
with a call to commitTransaction(). So to checkpoint the persistent part of a 
collection, all that is required is a call to conunitTransactionO. 

pC++/persistence is still under development at the time of the writing of 
this text; some details may change and some functionality may be added before 
the implementation is complete. 

2.4    An Example: Parallel Sorting 
To see how pC++ is used, consider the problem of sorting a large vector of 
data using a parallel bitonic sort algorithm. A bitonic sequence consists of 
two monotonic sequences that have been concatenated together where a wrap- 
around of one sequence is allowed. That is, it is a sequence: 

00,01,02,-- • ,°m 

where m = 2n - 1 for some n, and for index positions i and j, with i < j, 
di, ai+i,.. -, Oj is monotonic and the remaining sequence starting at a(j+1) mod n> 
where a0 follows a„, is monotonic in the reverse direction. 

Merging a bitonic sequence of length k involves a sequence of data exchanges 
between elements that are Jfe/2 apart, followed by data exchanges between ele- 
ments that are fc/4 apart, etc. The full sort is nothing more than a sequence of 
bitonic merges. We start by observing that a set of two items is always bitonic. 
Hence for each even i, the subsequence a{ and oi+i is always bitonic. If we merge 
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->■       «=—      ->       -c-       _>       <-       _>      <- grabFrom(l) 

OOOOOOOOOOOOOOOO merged) 
 —>   ,       <—5=        —>   _,      <—7~ grabFrom(2) 

OOOOOOOOOOOOOOOO 
->       ->      <-       <_       _>       ->       <_      <_ grabFrom(l) 

OOOOOOOOOOOOOOOO merge(2) 
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 >             >            <             <  grabFrom(2) 

OOOOOOOOOOOOOOOO 
-:»       ->      ->       ->       <_       -=-       <_      <- grabFrom(l) 

OOOOOOOOOOOOOOOO merge(3) 

OOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOO 

grabFrom(8) 

grabFrom(4) 

grabFrom(2) 

grabFrom(l) 
OOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOO 

Figure 1: Data exchanges in the Bitonic Sort Algorithm 

these length two bitonic sequences into sorted sequences of length two and if 
we alternate the sort direction, we then have bitonic sequences of length four. 
Merging two of these bitonic sequences (of alternating direction) of length 4 we 
have sorted sequences of length 8. The sequence of data exchanges is illustrated 
in Figure 1. 

In pC++, a pure data-parallel version of this algorithm can be built from 
a collection List of objects of type Item as shown below. Each item contains 
an object of type E which is assumed to be the base type of the list we want to 
sort: 

struct E { 
public: 
int key; 

}; 
class Item { 
public: 
E a; 

The List collection contains one public function sort() and a number of 
fields and members that are denned in the MethodOf Element section. Because 
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the parallel algorithms require parallel data exchanges, we must have a tem- 
porary tmp to hold a copy of the data to be exchanged for each element. In 
addition, there are two flags, exchangeDirection and sortDirection which 
are used to store the current exchange direction and the current sort order re- 
spectively. As can be seen in figure Figure 1, the value of these flags depends 
on the location of the element in the list as well as the point in time when an 
exchange is made. 

The pC++ definition of the List collection can be summarized as follows. 

Collection List:  SuperKernel { 
public: 
void sortO; 
int N;     // number of elements 

MethodOfElement: 
E tmp; 
virtual E a; 
int sortDirection, exchangeDirection; 
void set_sort_direction (int k) { sortDirection = (indexl/k)'/.2; } 

void set_exchange_direction(int k) { exchangeDirection = (indexl/k)'/.2; } 

void merge(){ 
if (((sortDirection == exchangeDirection) kk  (this->a.key > tmp.key)) II 

((sortDirection != exchangeDirection) kk  (this->a.key <= tmp.key))){ 

this->a = tmp; 

} 
} 
void grabFrom(j){ 

if(exchangeDirection == 1) tmp = (*thisCollection)(indexl+j)->a; 

else      tmp = (*thisCollection)(indexl-j)->a; 

}. 
}; 

In general, MethodOf Element functions are those element-wise operations in 
an algorithm that depend on the relation of one element to the whole collection 
or to other elements in the collection. For example, the function grabFrom(int 
j) is a method that, when applied to one element at position k, will access the 
data in the element at position j+k. 

The SuperKernel class provides two additional members, thisCollection 
and index 1, which provide a pointer to the containing collection and the position 
of the element in the collection, respectively. The function merge () uses the 
current state variables sortDirection and exchangeDirection to determine 
which element of the data to keep after the exchange step. 

The sort() function is then a sequence of merge steps, each of which con- 
tains a sequence of exchanges as shown below. The main program allocates a 
list of items and then calls the sort function. 

List::sort(){ 
int k = 1; 
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for  (int  i = i;   i < log2(N);   i++){    // merged)   step 
k = 2*k; 
this->set_sort_direction(k); 
for  (int  j  = k/2;   j  > 0;   j  = j/2){ // exchange(j)   step 

this->set_exchange_direction(j); 
this->grabFrom(j); 
this->merge(); 

} 
} 

} 

Processor_main(){ 

Processors P; 

int N = read_problem_size(); 

Distribution D(N.&P,BLOCK); 

Align A(N,"[ALIGN(X[i],D[i])]"); 

List< Item > L(&D, &A); 

L.sortO ; 

} 
This version of the program works, but has a serious flaw. If the size of the 

list to be sorted is N and there are only P « N processors in the system, the 
bitonic sort has parallel complexity 0(^ log2 JV), which is far from optimal. To 
improve the efficiency, we can build a hybrid algorithm as follows. Let us break 
the list of N into P segments of length K = y. We begin the sort by applying 
a quicksort to each segment, but sorting them in alternating directions. Now 
each pair of adjacent sorted segments forms a bitonic sequence and we can apply 
the bitonic merge as before. However, at the end of each merge step, the list in 
each segment is only a bitonic sequence, not a sorted sequence. We must then 
apply a local bitonic merge to sort it. If we rewrite the algorithm above with 
a Segment class replacing the Item class and expanding the trap variable to an 
array we only need to make a few modifications to the program. These changes, 
shown below, consist of inserting the calls to the local quicksort and local bitonic 
merge in the sort function. The grabFromO and merge() functions also need 
to be replaced by ones that can accommodate an array. 

// P is the number of elements   (processors) 
// N is the total number of elements to sort. 
// K = N/P is the  size of each segment. 

class Segment{ 
public: 

E a[K] 
quickSortO;   // 0(K log(K)) 
localBitonicMerge(int  direction);   // 0(K) 
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}; 

List::sort(){ 
int k = 1; 
this->quickSort(); 
for (int i = 1; i < log2(P); i++){ // merge(i) step 

k = 2*k; 
this->set_sort_direction(k); 
for (int j = k/2; j > 0; j = j/2){ // exchange(j) step 

this->set_exchange_direction(j); 
this->grabFrom(j); 
this->merge(); 

} 
this->localBitonicMerge(d); 

} 
} 

void SortedList::grabFrom(int  dist){ 
E *T; 
int offset =  (d2)?  -dist:  dist; 
T = 6((*ThisCollection)(indexl+offset)->a[0]); 
for(int  i = 0;   i < K;   i++)  tmp[i]   = T[i]; 

} 
void SortedList::merge(){ 

for  (i = 0;   i < K;   i++) 
if(((d == d2)  &&  (a[i].key > tmp[i] .key))   || 

((d  != d2)  &fc  (a[i].key <=tmp[i] .key))){ 
a[i]  = tmp[i] ; 

} 
} 

}; 

Assume that the quicksort computation runs with an average execution time 
of DK log K for some constant D, that we can ignore the cost of the barrier 
synchronization, that there are P = 2" processors available, and that the size 
of the list to be sorted is N. The time to sort is then roughly: 

T(N) = ^C log2 P + Dj log j + log P 

where C is a constant that depends upon communication speed.  Given a se- 
quential complexity of DN log N we see that the parallel speed-up is of the 
form: 

p 
Speedup(N, P) = !   ,   Clog2P 

1 "*"  D log N 

which, for large N, approaches P. 
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This algorithm has been tested on a variety of machines and it is both 
portable and fast. Sorting one million items takes 3.56 seconds on a 64 node 
Paragon and 1.68 seconds on an 8 node SGI Challenge. However, comparing 
this to the standard system routine qsort reveals that the speedup is not great. 
On the same data set with one node of the SGI Challenge, qsort requires 10.21 
seconds. Hence the speed-up of our algorithm is 6.08 on 8 processors. This 
value matches the formula above when C = D. 

2.5    The Polygon Overlay Program 
The following algorithm is used to implement the polygon overlay code in pC++. 
Given two maps A and B as input, map A is divided into smaller maps A,. 
These smaller maps are then distributed over the elements of a pC++ collection. 
If there are N polygons in map A to be divided and P collection elements, 
then each element gets N/P polygons, except element zero, which gets N/P + 
N mod P polygons (Figure 2). 

Map B is duplicated in each element. During a parallel computation, each 
element finds the overlay of map A3 and map B. In the output stage, the 
resulting overlay map in each element is combined with the maps in the other 
elements to form the final overlay map. No inter-element communication is 
required during the parallel computation and thus the computation is carried 
out in the "embarrassingly parallel" fashion. In this algorithm, map B is not 
divided and distributed; if it were, it would be difficult for an As map to know 
whether it overlaps with a Bs map which is in another element. A more elaborate 
parallel algorithm would be required, and inter-element communication would 
be unavoidable. We discuss this further later in this section. 

The collection pC++ element class is defined as follows: 

class Patch { 
public: 
polyVec_p leftVec, rightVec, outVec; 
PatchO {} 

}: 
where leftVec, right Vec, and outVec are, respectively, pointers to map As, 
map B, and their resulting overlay. The pC++ collection is defined as follows: 

Collection Overlay   :  public SuperKernel  { 
public: 
Overlay(Distribution  *D,  Align *A); 

MethodOfElement: 
virtual polyVec.p leftVec,  rightVec,   outVec; 
void readMapO ; 
void writeMapO; 
void distributeMapO ; 
void f indOverlayO; 

}; 
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Figure 2: Polygon map distribution scheme. This shows the distribution of 
a map consisting of N = 35 polygons over P = 2 collection elements. The 
polygons are numbered (sorted) according to the order used in the sequential 
ANSI C implementation. With N/P = 17 and N mod P = 1, element 0 gets 
the shaded polygons and element 1 gets the unshaded polygons. In the tests 
reported in this paper, the load imbalance was found to be insignificant. 
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In this definition, readMapO inputs the two polygon maps. The actual read- 
ing is carried out by collection element zero. After the two maps are read, 
element zero calculates the number of polygons all other elements should have 
and broadcasts the information. In distributeMapO, all other processors then 
fetch their piece of the first polygon map and the entire second polygon map 
from element zero, f indOverlay () finds the overlay of As and B maps. In its 
pC++ implementation, f indOverlayO simply calls the original ANSI C poly- 
gon overlay functions based on user-selected options. No modification of the 
ANSI C code is needed, except in the case of a modified list-deletion algorithm 
described in later in this section. 

In writeMapO, element zero gathers overlay maps from all the elements. It 
calls a sorting routine to sort the polygons in a special order and writes the entire 
overlay map out. The sorting could have be done in parallel using the modified 
bitonic merge sort described in (Section 2.7.1). However, since our focus was on 
the parallelization of the polygon overlay algorithm itself, we did not parallelize 
the sorting routine. The actual implementation of function f indOverlay () is 
given in the following piece of code. 

void Overlay: :findOverlayO 

{ 
double time; 
pcxx_UserTimerClear(indexl); 

pcxx_UserTimerStart(indexl); 

if (useLnArea && useOrder){ 

/* sorted-ordered list-deletion overlay */ 

outVec = overlayAreaLinkedOrderdeftVec, rightVec); 

} else • • •{ 
• • -as in sequential code- ■ ■ 

} 
pcxx_UserTimerStop(indexl); 

time = pcxx_UserTimerElapsed(indexl); 

printfO'Time for element '/.d : '/.lf", indexl, time); 

} 
where pcxxJJserTimer functions clear, start, and stop a timer numbered by the 
element's index. pcxxJJserTimerElapsed reports the elapsed time. The main 
program is: 

void Processor_Main()   { 
int  elem_count  = pcxx_TotalNodes(); 
Processors  P; 
Distribution D(elem_count,&P,BLOCK); 
Align A(elem_count,"[ALIGN(X[i],D[i])]"); 
Overlay<Patch> X(&D,&A); 

X.readMapO ; 

X.distributeMapO; 

X.f indOverlayO; 

X.writeMapO ; 
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Figure 3: Comparing the list-deletion with the modified list-deletion algorithm. 

} 

where pcxx.TotalNodes returns the number of processors used for the compu- 
tation. 

The pC+-1- code was tested on a variety of platforms including a Cray T3D, 
an IBM SP-2, a SGI Power Challenge, an Intel Paragon and a Sun Sparc 10. 
Two maps each containing about 60,000 polygons were used as input. Three 
sets of tests were conducted using the naive overlay algorithm, the list-deletion 
overlay algorithm, and a modified list-deletion overlay algorithm. 

The modified list-deletion algorithm can be described as follows. As illus- 
trated in figure 3, we are given two maps A and B. A is indicated by shaded 
area. Polygons in map A are separated by solid lines. Polygons in B are sep- 
arated by dashed lines. Assume the polygons are sorted according to the x 
coordinates of their upper right corner, the ordering scheme used in the ANSI C 
code, so that comparison of the two maps would begin with the polygons in 
the lower left corners of both maps. In both the modified and the original list- 
deletion algorithms, when the lower left corners of maps A and B coincide, the 
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loop which compares polygons in B with polygon I in A begins with the poly- 
gon pointed by arrow 1. The subsequent comparisons of polygons in B with 
polygon II in A begin with the polygon pointed arrow 2, because the polygon 
pointed by arrow 1 has been eliminated in earlier comparisons. Similarly, sub- 
sequent comparisons of polygons in B with polygon 777 in A begin with the 
polygon pointed arrow 3. In list-deletion algorithm, when the lower left corners 
of the maps do not coincide, all comparisons of polygons in B with polygons 
I, II, III in A begin with the polygon pointed by arrow 1. This is because 
polygons to the left of map A are never eliminated in the comparison process. 
In the modified list-deletion algorithm, when the lower left corners of the maps 
do not coincide, only comparisons involving polygon I begin with the polygon 
pointed by arrow 1. Subsequent comparisons involving II and III begin with 
the polygons pointed by arrow 2 and 3 respectively. 

Our experiments with the list deletion algorithm revealed that it does not 
scale well. The extra work required to compare polygons in map A with polygons 
in map B where no overlay occurs can degrade the algorithms performance to 
well below that of the naive algorithm. Because the polygons in all the maps 
we used for our tests were already sorted, the modified the list-deletion overlay 
algorithm could be applied. The resulting improvement in performance was 
dramatic. The benchmark results of the three sets of experiments are shown in 
Table 2 and Figure 4. 

As can be seen in Table 2 and Figure 4, on all the machines we were able 
to obtain nearly linear speedups for the naive and the modified list-deletion 
algorithm. The speedup curves decreased slightly for the modified list-deletion 
algorithm as the number of processors increased. This was due to the fact that 
as workload on each processor decreased, the overhead became more prominent. 
The results show that the parallel algorithm we adopted worked very well for 
the naive and the modified list-deletion algorithm. The original list-deletion 
algorithm is not well-suited for parallel execution, causing the parallelized code 
to perform poorly. 

Another way to parallelize the list-deletion algorithm without modifying the 
sequential list-deletion algorithm is to divide B into Bs and distribute Bs as we 
did with As. Assuming, after the division and distribution, As and Bs roughly 
cover the same area, finding the overlay of them will be straight forward. Once 
the overlay of As and Bs is found, the collection elements exchange the part 
of Ba where no overly is found, and a second phase of parallel operation can 
be carried out. This parallel algorithm requires N phases of parallel operation 
where N is the number of collection elements (usually chosen to be equal to the 
number of processors). This algorithm also requires that the input polygons be 
sorted. 

However, it should be noted that the result of the modified list-deletion algo- 
rithm is a distributed list of polygons which are locally sorted but not globally 
sorted. However globally sorting the polygons is a very simple task. The sort- 
ing algorithm described in section Section 2.4 has been applied to a data set of 
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Figure 4: log(P) vs. log(i) plot. P is the number of processors and t is the 
execution time in seconds. The upper four solid lines are log(P) vs. log(f) 
curves for the naive overlay algorithm; the lower four solid lines are log(P) - 
log(t) curves for the modified list-deletion algorithm; the four dashed lines are 
the log(P) vs. log(t) curves for the list-deletion algorithm. 
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Platform 

Number of Processors 
1 2 4 8 16 32 64 

Cray T3D 2135.7 1143.2 590.2 299.8 151.1 75.8 

19.9 990.5 735.7 429.6 229.6 118.2 

19.5 10.6 5.7 3.2 2.1 1.5 

Intel Paragon 3782.4 1942.4 983.4 494.9 248.1 124.2 

28.5 1414.8 1048.7 612.7 327.6 168.8 85.6 

29.1 14.5 7.6 4.3 2.9 2.0 1.66 

IBM SP-2 1587.7 812.1 410.4 205.7 103.3 
10.2 554.4 430.1 238.8 127.6 

10.6 5.4 2.9 1.7 1.0 

Power Challenge 1409.8 724.8 367.6 185.1 
11.7 547.1 405.4 236.2 
11.7 6.6 4.0 2.5 

SPARC 10 1562.3 
14.0 

  13.4 1 . 

Table 2: Time, in seconds, spent in the f indOverlay function. Two maps each 
containing about 60,000 polygons (file K100.00 and K100.01) were used as input. 
For each platform, results are shown for the naive overlay algorithm first, then 
for the list-deletion overlay algorithm, then for the modified list-deletion overlay 
algorithm. 

this size and the time to sort it was 0.35 seconds on an 8 processor SGI Power 
Challenge. Hence the execution times in the table above should have about one 
third of a second added to account for the final sort. 

A large fraction of the code in many parallel applications is devoted to I/O. 
For example, in an early version of the polygon overlay program using ordinary 
UNIX file I/O, 200 lines of code (approximately 10% of the total), was devoted 
to I/O. In addition to programming time overhead for file I/O, there is run time 
overhead as well; I/O is increasingly being identified as a bottleneck in parallel 
applications. 

pC++/streams (Section 2.3.3) can reduce the programming time and run 
time overheads associated with file I/O in pC++ applications. Rewriting the 
original UNIX I/O in the polygon overlay program using pf-streams reduced 
I/O code from 200 lines to 70 lines. 
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2.6    The Self-Consistent Field Code 

Here and in Section 2.7 we describe our work with with the Grand Challenge 
Cosmology Consortium (GC3). This work is abstracted from two longer papers: 
[32] and [15]. 

One of the N-body codes developed by the GC3 researchers is the Self- 
Consistent Field (SCF) code, which is used to simulate the evolution of galaxies. 
It solves the coupled Vlasov and Poisson equation for collisionless stellar systems 
using the iV-body approximation approach. To solve Poisson's equation for 
gravitational potential: 

V2$(f) = 4irp(r), 

the density p and potential $ are expanded in a set of basis functions. The basis 
set is constructed so that the lowest order members well-approximate a galaxy 
obeying the de Vaucouleurs i?1/4 projected density profile law. The algorithm 
used is described in detail in [17]. 

The original SCF code was written in Fortran-77 by Lars Hernquist in 1991. 
In 1993, the code was converted to Thinking Machines CM Fortran by Greg 
Bryan. Experiments conducted by Bryan on the 512-node CM-5 at the National 
Center for Supercomputing Applications (NCSA) indicate that with 10 million 
particles the CMF code can achieve 14.4 Gflops on 512 nodes of the CM-5 [17]. 

The expansions of the density and potential take the following forms: 

P(f) = ^2 Anlmpnlm(r) 
nlm 

nlm 

where n is the radial quantum number and I and m are quantum numbers for 
the angular variables. Generally, the two sums will involve different expansion 
coefficients. But the assumption of bi-orthogonality ensures a one-to-one rela- 
tionship between terms in the expansions for the density and potential. The 
basis sets pnim and 3>njm also satisfy Poisson's equation: 

V2$„;m(r) = 47rpn(m(r0 

and are given by: 

*nlm{?) = ~ (1 +
r

r')2,+1 C2'+3/2(fl V4^m(fl, 4>) 

s      r + 1 
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where Kni is a number related only to n and I, and Cn ' (£) and Yim(d, </>) are 
ultraspherical polynomials and spherical harmonics, respectively. After some 
algebra, the expansion coefficients become 

Anim = -j-^Tnk[^nim(rk,ek,4>k)]* 
Inl 

where /„/ is a number and m^ is the mass of the fcth particle. Once the gravita- 
tional potential is found, the gravitational force per unit mass can be obtained 
by taking the gradient of the potential and the particles can be accelerated 
accordingly. 

2.6.1    The pC++ Version of the SCF Code 

We design a C++ class called Segment to represent a subgroup of the N particles 
used in the simulation. As we have discussed earlier, the major procedure in 
the SCF code is to compute the sums for the expansion coefficients Anim. Our 
approach is to first compute local sums within each Segment object. After 
this, global sums are formed by a global reduction. The global sums are then 
broadcast back to each Segment object where the particles are accelerated by 
the gravitational force. Fortran subroutines in the original Fortran code can be 
used as member functions of the Segment class, although subroutines involving 
inter-element communication and I/O need to be modified. 

The Fortran subroutines are called by pC++ through a specially designed 
Fortran interface [32]. The Segment class is declared (with many unimportant 
variables and member functions omitted) as follows: 

class  Segment  { 
public: 

FArrayDouble x,  y,  z,  vx,  vy,  vz,   ax,   ay,   az,  mass, 
pirn,   elm,  dim,   elm,  flm,  dplm; 

double  sinsum[lmax+l] [lmax+1] [nmax+1] , 
cossum[lmax+l] [lmax+1] [nmax+1] ; 

Segment(); 
void compute_polynomial(); 
void compute_acceleration(); 
void update_position(); 
void update_velocity(); 

}; 

The data type FArrayDouble is denned in the Fortran library; it serves as an in- 
terface to Fortran double precision arrays. The FArrayDobule variables defined 
above are one-dimensional arrays that contain the positions, the velocities, the 
accelerations, and the masses of particles belonging to a Segment object, and the 
expansion coefficients and values of the polynomial, sinsum and cossum contain 
the local sums and eventually the global sums of the expansion coefficients. The 
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class member functions call Fortran subroutines: compute_polynomial() com- 
putes the polynomials and local sums, compute_acceleration() computes the 
acceleration for each particle, and update_position() and update_velocity() 
update the positions and velocities of particles. 

The collection that distributes the elements, allocates memory, and manages 
inter-element communication is declared as below. Again, many less important 
member functions are omitted for brevity: 

Collection SelfConsistField : public Fortran { 

public: 

SelfConsistField(Distribution *D, Align *A); 

void InParticlesO; 

void InParameters(); 

void OutParticles(int nsnap); 

MethodOfElement: 

virtual void compute_polynomial(); 

virtual void compute_acceleration() ; 

virtual void update_position(); 

virtual void update_velocity(); 

void read_segment(); 

void write_segment(); 

}; 

The functions declared here are pC++ functions. Their main purpose is to 
handle I/O. InParticlesO, InParameters(), and OutParticlesO read input 
files and write to output files, while read_segment () and write_segment() 
are called by InParticlesO and OutParticlesO to perform parallel I/O. 
Functions that are already defined in element class Segment are declared as 
virtual functions in this collection declaration. The inherited Fortran collection 
is a parent collection which handles inter-element communication. Fortran itself 
is derived from the SuperKernel collection. 

The main program is: 

void Processor_Main()   { 
elem.count  = pcxx_TotalNodes(); 
Processors  P; 
Distribution D(elem_count,   &P,  BLOCK); 
Align A(elem_count,   " [ALIGN (X[i] ,   D[i])]"); 
SelfConsistField<Segment>  X(&DS   &A); 
// read initial model 
X.InParameters(); 
X.InParticlesO ; 
X. compute_polynomialO ; 
X.ReduceDoubleAdd(offset,variable_count); 
X.compute_acceleration(); 
// main loop 
for  (n =  1;  n <= nsteps;   n++)   { 

X.update_position(); 
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Platform 

Number of Processors 
8 16 32 64 

Cray T3D 
Intel Paragon 

IBM SP-2 
Power Challenge 
CM-5 (pC++) 

CM-5 (CM Fortran) 

116.9 

223.0 
667.3 
186.9 
58.6 

115.3 
332.5 
103.5 

45.8 
50.3 

168.5 

Table 3: SCF code execution time, in seconds, for evolving a 51,200 particle 
stellar system for 100 time steps. The expansions were truncated at nmax = 6 

and Imax = 4. 

X.compute_polynomialO; 
X.ReduceDoubleAddCoffset,   variable.count); 
X.compute_acceleration(); 
X.update.velocityO ; 
X.OutParticles(n); 

1 
} 
where ReduceDoubleAdd is a reduction function inherited from SuperKernel, 
offset is measured from the beginning of the class Segment to the beginning of 
the field sinsum, and variable.count is the total number of array elements in 
sinsum and cossum. A leapfrog integration scheme is used to advance particles. 

2.6.2    Benchmark Results 

Our experiments with the pC++ SCF code were conducted on a Thinking 
Machines CM-5, an Intel Paragon, an SGI Power Challenge, an IBM SP-2, 
and a Cray T3D. For comparison, we also ran the CM Fortran SCF code on the 
CM-5. 51,200 particles were used for the simulation. The system was allowed to 
evolve for 100 time steps. The results of these experiments are listed in Table 3 

As can be seen, the SCF code scales up very well on the parallel machines. 
On the CM-5 the pC++ version is about 1.1 times faster than the CM Fortran 
code. This is mainly because the pC++ code used a faster vector reduction 
routine, while the CM Fortran code used a scalar reduction routine. The code 
achieved highest speed—approximately 50 MFLOPS per processor—on the SGI 

Power Challenge. 3 

3The pC++ version of the SCF code described here was used recently in an experiment 
involving a simulation of 16 million particles. One of the largest such simulations to date. 
The computation was distributed over two MPPs, the 512 node NCSA CM-5 and the 512 

37 



2.7    The Particle Mesh Code 

Another N-body code in the dossier of the GC3 group is the Particle Mesh (PM) 
code [9]. Originally implemented in Fortran-77 and CM Fortran, the particle- 
mesh method used in the PM code computes long-range gravitational forces 
in a galaxy or galaxy cluster system by solving the gravitational potential on a 
mesh. The three-dimensional space is discretize by a three-dimensional grid. An 
average density for each grid point is then computed using a Nearest Grid Point 
scheme, in which the density value at a grid point is the sum of all masses of the 
particles nearest to that grid point. Once the density values at the grid points 
are known, Fourier transforms are performed to compute the potential values 
at those points. The potential values at the grid points are finally interpolated 
back to the particles, and the particle positions and velocities are updated. 
The natural data structures for this are an one-dimensional particle list and a 
three-dimensional mesh. 

2.7.1     The Particle List Collection 

The particles in the simulation are first sorted according to their affinity to mesh 
points; particles closest to a given mesh point are neighbors in the sorted list. 
The sorted list is then divided into segments and each segment forms an element 
of a particle list collection. 

There are two approaches that we can follow when dividing the sorted list. 
There is a tradeoff between data locality and load balance associated with the 
two approaches. In the first approach, the sorted list is evenly divided so that 
the segments have the same length. In the second, particles belonging to the 
same mesh points are grouped into the same segment and segments will have 
different lengths. 

In the first approach, load balancing is ensured because each processor has 
the same number of particles. However, this approach may cause particles be- 
longing to the same mesh point to be distributed among different elements, thus 
requiring more inter-element communication and remote updates. The second 
approach allows a greater exploitation of data locality, but there is a potential 
load balancing problem. As the system evolves, particles (stars or galaxies) 
tend to group together into clumps. Consequently, some mesh points may have 
1000 times more particles than other mesh points, and segments that have these 
mesh points will have much longer lengths. Since we usually distribute the col- 
lection elements (in this case segments) evenly across the processors in a parallel 
machine, the processors that have those long segments will do more work. We 
therefore decided to follow the first approach. 

The Segment class is defined as: 

class Segment { 

node PSC T3D and run in parallel. Communication bettween the two codes was done using 
MPICH over the internet. 
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public: 

int particle_couivt; 

FArrayDouble x, mass, g, v; 

Segment(); 

}; 
where x, mass, g, and v represent the position, the mass, the acceleration in- 
duced by gravity, and the velocity of a particle, respectively. 

The ParticleList collection is denned as 

Collection ParticleList : public Fortran { 

public: 
ParticleList(Distribution *D, Align *A); 

void SortParticlesO; 

MethodOfElement: 

void pushParticles(Mesh<MeshElement> &G); 

void updateGridMass(Mesh<MeshElement> &G); 

}; 
The function SortParticlesO sorts particles in lexicographic order accord- 

ing to their positions. The particles within each segment are first sorted using 
the standard C library quicksort function qsort(). A global parallel sort is 
then performed using the bitonic sort of Section 2.4. 

pushParticlesO uses the gravitational force to update the positions and 
velocities of the particles. The argument passed to pushParticlesO is a col- 
lection designed for the mesh data structure (see next subection). The mesh 
collection is passed to pushParticlesO so that potential values at the grid 
points can be accessed by particles in the Segment element and used to update 
the particles' velocities and positions. The function updateGridMassO is used 
to add the mass of a particle to the total mass of the mesh point to which it 
is closest. This function first loops through the particles local to a segment 
and accumulates a local total mass for each mesh point. It then adds the local 
total mass to the mesh point's total mass by a remote update operation on the 
appropriate mesh point. Because remote updates are expensive, the particles 
are sorted to minimize the number of remote updates. 

2.7.2    The Mesh Collection 

The mesh is logically a three dimensional array of mesh points, each containing 
values for density and position. Because an FFT is used to solve the gravita- 
tional potential equation, the data structure is designed as an one-dimensional 
collection, each element of which contains a slice of the three-dimensional mesh: 

class MeshElement { 

public: 

double density[x_dim_size][y_dim_size]; 
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MeshElementO; 

void add density(double density, int x.zone, int y_zone); 

}; 

add_density() is remotely invoked by Segment elements to deposit mass on 
grid points. 

The collection Mesh is denned as: 

Collection Mesh  : Fortran { 
public: 
Hesh(Distribution *T, Align *A); 
void computePotentialO; 

MethodOfElement: 
void xyFFT.f orwardO ; 
void zFFT_f orwardO ; 
void zFFT_backward(); 
void xyFFT.backwardQ; 
void transpose_xy_to_xz(); 
void transpose_xz_to_xy(); 

The function computePotentialO computes the gravitational potential us- 
ing the total mass at each mesh point. It calls the FFT routines listed un- 
der MethodOfElement. The density distribution is first transformed into the 
wavenumber domain by a FFT along the x, y, and z directions. After solving 
the Poisson's equation for the gravitational potential in the wavenumber do- 
main, the potential (or force components) is transformed back into the spatial 
domain. 

The FFT transform in the x, y, and z directions is performed by the Mesh 
collection. The FFT in the x and y directions is straightforward, since each 
MeshElement contains an entire array of mesh points. To perform an FFT in the 
z-direction, data are transformed using transpose_xy_to_xz and transpose_xy_to_xy. 

2.7.3    The Main Simulation Loop 

Given these collections, the main body of the simulation can be implemented 
as follows: 

main(){ 
int num.of.segments  = pcxx_TotalNodes(); 
int mesh_dim_z = 64; 
Processors P; 

Distribution Dist_PartList(num_of„segments,   &P,  BLOCK); 
Align Align_PartList(num.of.segments,   " [ALIGN(G[i],   T[i])]"); 
ParticleList<Segment> part(&Dist_PartList,  &Align_PartList); 

Distribution Dist_Mesh(mesh_dim_z,   &P,  BLOCK); 
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Platform 
Number of Processors 
8 16 32 64 

Cray T3D 
IBM SP-2 

Power Challenge 
CM-5 (pC++) 

CM-5 (CM Fortran) 

30.4 

33.4 

16.1 

23.1 
81.0 

134.6 
20.4 

Table 4:  PM code execution time, in seconds, for evolving a 32,768 particle 
stellar system for 10 time steps. A 64 x 64 x 64 grid was used. 

Align Align_Mesh(mesh_dim_z,   "[ALIGN(G[i],   T[i])]"); 
Mesh<MeshPlane> mesh(&Dist_Mesh,   &Align_Mesh); 

// initialize particle list 

// main loop 
for (int i = 0; i < number_of_steps; i++){ 

mesh.computePotentialO ; 
particlelist.pushParticles(mesh); 

particlelist.sortParticlesO ; 

particlelist.updateGridMass(mesh); 

} 

} 
The main loop involves computation on both the Mesh and ParticleList col- 
lections. First, the potential is computed in parallel on the grid. Second, the 
particle velocities and positions are updated. If particles have moved to new grid 
points, the appropriate data structures are then updated. The particles are then 
sorted, after which the particle masses are accumulated in their corresponding 
points for the next iteration step. 

2.7.4    Benchmark Results 

Our experiments with the pC++ PM code were conducted on a Thinking Ma- 
chines CM-5, an Intel Paragon, an SGI Power Challenge, an IBM SP-2, and a 
Cray T3D. For comparison, we also ran the CM Fortran PM code on the CM-5. 
32,768 particles were used for the simulation. The system was allowed to evolve 
for 10 time steps. The results of these experiments are listed in Table 4. 

As can be seen in the table, the code scales up relatively well on the T3D 
and Power Challenge. On the CM-5, the pC++ code is considerably slower 
than the CM Fortran code. This is because the CM Fortran code can make use 
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of transpose routines embedded in an FFT developed by Thinking Machines' 
engineers. The pC+4- code has complicated data structures and cannot use 
those transpose routines. Again, the best performance was obtained on the 
Power Challenge, although this architecture is limited to a small number of 
processors. 

In the following chapter we describe the TAU performance analysis tool 
system that provides the programming and debugging environment for pC++. 
TAU is a complete system that provides pC++ with an integrated development 
environment similar to that found in professional development system. However, 
by providing parallel performance analysis capabilities, TAU goes far beyond 
any available commercial system. 
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3    Tau 

3.1    Introduction 
Most users find parallel programming difficult for at least four reasons. First, 
parallel computing abstractions (e.g., data parallelism, task parallelism, pro- 
ducer/consumer parallelism) are more diverse than sequential abstractions, and 
the range of abstractions is not as well supported in existing programming 
systems.   ARE PARALLEL COMPUTING ABSTRACTIONS MORE DIVERSE THAN 

LIST-BASED VS. UNIFICATION-BASED VS. PROCEDURAL VS. . . . ? Hence, the 
choice of a parallel computing model requires a sophisticated understanding of 
application, algorithm, language, system, and architecture issues. WHAT ARE 

"SYSTEM" ISSUES (THAT ISN'T COVERED BY OTHER HEADINGS IN THIS LIST? 
Second, most parallel programming systems do not insulate users fully from 
low-level hardware and system software concerns; those that do make it difficult 
for users to undertake performance debugging, and hence to realize the poten- 
tial high performance of parallel systems. Third, program analysis tools for 
parallel programming are either not generally available, not particularly useful, 
or not integrated into a complete programming environment. Fourth, users' 
requirements for parallel computing are constantly changing: high performance 
is important, but so is the need to have parallel programs interoperate with 
graphics systems, networked resource servers, databases, and so on. 

The most common way to address these issues at present is to develop lan- 
guages which support specific parallel computing abstractions, such as HPF. 
These languages invoke parallel operation via compiler transformations and calls 
to runtime system routines. Users gain programmability, since they specify par- 
allelism abstractly and rely on the compiler to generate task and data mapping 
code, and portability, since the system can be retargeted to new platforms. 
However, these gains often come at the expense of observability. Unless the 
programming system contains analysis tools that can relate a program's exe- 
cution dynamics to its semantics, increased abstraction will make it difficult 
to debug or tune program performance. This suggests that tools should be 
designed specifically to meet the requirements of the language environment. 

Since 1992, we have participated in building such an integrated toolset for 
pC++, a parallel C++-based language (Chapter 2). Our charter was to de- 
sign and develop a program analysis tool system. CAN YOU SUPPORT THIS 
CLAIM TO UNIQUENESS? WHAT DOES IT MEAN TO SAY, "LET THE PROGRAM- 
MING REQUIREMENTS DETERMINE THE TOOL SPECIFICATIONS"? The project 
was unique in that we decided early on to let the programming requirements 
determine the tool specifications. In addition, we leveraged the language sys- 
tem infrastructure to enhance the integration of compiler and analysis tools. 
The fact that our base language was C++ encouraged us to make our tools 
as flexible as possible, so that we could use encapsulation (for supporting data 
aggregation and parallel invocation) and inheritance (for building distributed 
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data structures) in our implementations. Finally, since pC++ was designed to 
run on all parallel MIMD systems, our program analysis environment had to be 
portable as well. 

The result of our efforts is called TAU, for Tuning and Analysis Utilities. 
In Section 3.2, we list the requirements that we felt TAU had to address. How 
TAU's design meets these requirements is discussed in Section 3.3, which also 
covers TAU's architecture and implementation. Each TAU tool is described in 
full in Section 3.4. Since the effectiveness of TAU can be only measured by its 
usefulness for analysis of pC++ programs, Section 3.5 shows how TAU was used 
to analyze the pC+-t- implementation of polygon overlay, described in section 
2.5. 

TAU is not without its shortcomings. A critique of its current state is given 
in Section 3.6. Section 3.7 discusses future development of TAU, partiuclarly 
its extension to other parallel language environments and the incorporation of 
more sophisticated tools. 

3.2    Design Requirements and Goals 

An earlier version of this material was published in [24]. 

TAU was designed to improve parallel programming productivity by com- 
bining advances in parallel debugging, performance evaluation, and program 
visualization tools. We feel that the requirements the design and the tools had 
to address are common to next-generation parallel programming environments, 
and include: 

Give a user (program-level) view. Past tool development has been domi- 
nated by efforts directed at the execution level (e.g., efficient implemen- 
tation of monitoring). Consequently, tool users are given little support 
for translating between program-level semantics and low-level execution 
measurements. 

Support high-level, parallel programming languages. The development 
of advanced parallel languages (e.g., HPF and pC++) separates users 
from execution-time reality. A successful tool must present information 
to users in the terms defined by the language they are using. 

Integrate with compilers and runtime systems. Most debugging and per- 
formance analysis tools have been developed independent of parallel lan- 
guages and runtime systems, resulting in poor reuse of base-level technol- 
ogy, incompatibilities in tool functionality, and interface inconsistencies in 
the user environment. 

Enable portability, extensibility, and retargetability. Users of portable 
languages need a consistent program development and analysis environ- 
ment across multiple execution platforms. Tools should be extensible, so 
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that they can accommodate new language or runtime system features, and 
retarteable, so that the tool design can be reused for different languages 
and environments. 

Enhance usability. A high-level, portable, integrated tool is not automati- 
cally easy to use. In the past, too little emphasis has been put on interface 
design, which has led to tools being poorly used. 

These requirements become even more significant as we develop parallel lan- 
guages with highly optimized runtime systems. We believe that the main prob- 
lems are ones of tool design rather than functionality: existing tools implement 
a broad range of analysis techniques, but have not been successfully integrated 
into usable parallel programming environments. One way to improve integra- 
tion is to base the design of tools on the particular performance and debugging 
requirements of the parallel language for which the tools will be used. In this 
manner, tools can specifically target program analysis support where tool ap- 
plication is well understood. However, this cannot be fully realized unless tools 
can leverage other programming system technologies (e.g., use the compiler to 
implement instrumentation). 

3.3    TAU Overview 

Parts of this material (3.0 and 3.1) were previously published in [24]. 

The TAU architecture defines how its components interoperate and fit in 
the pC++ language system. Below, we describe the TAU design and show 
how it addresses the programming productivity requirements of pC++. TAU is 
not a general solution to the problem of parallel program analysis. Instead, our 
goal was to demonstrate the potential benefits of a new development strategy for 
program analysis tools, one that promotes meeting specific analysis requirements 
over providing general-purpose functionality. 

TAU was specifically designed to meet the requirements listed in the previous 
section: 

Give a user (program-level) view. Elements of the TAU graphical inter- 
face represent objects of the pC++ programming paradigm: collections, 
classes, methods, and functions. These language-level objects appear in 
all TAU utilities. 

Support high-level, parallel programming languages. TAU is defined by 
the program analysis requirements of pC++, and was designed and im- 
plemented in concert with the pC++ language system. The most diffi- 
cult challenges during the development of TAU were to determine what 
low-level instrumentatione was needed to capture high-level execution ab- 
stractions, and how to translate performance data back to the application 
and language level. 
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Integrate with compilers and runtime systems. TAU uses the Sage++ 
toolkit [3] as an interface to the pC++ compiler for instrumentation and 
accessing properties of program objects. TAU is also integrated with the 
runtime system of pC++ for profiling and tracing support. 

Enable portability, extensibility, and retargetability. We implemented TAU 
in C++ and C to ensure an efficient, portable, and reusable implemen- 
tation.  The same reasoning led us to use Tcl/Tk [26] for our graphical 
interface. 

The TAU tools are implemented as graphical hypertools. While each is 
distinct, they act in concert like a single application. Each tool imple- 
ments some denned tasks; if one tool needs a feature of another, the first 
sends a request to the second (e.g., display the source code for a spe- 
cific function). This design allows easy extension. The Sage++ toolkit 
also supports Fortran-based languages, so that TAU can be retargeted to 
other programming environments. 

Enhance usability. We tried to make the TAU toolset as user-friendly as pos- 
sible. Many elements of the graphical user interface act like links in hyper- 
text systems, in that clicking on them brings up windows which describe 
the element in more detail. This allows the user to explore properties 
of the application by interacting with the elements of most interest. The 
TAU tools also support global features. When a global feature is invoked in 
any tool, it is automatically executed in all TAU tools which are currently 
running. Examples of these global features are described later. TAU also 
includes a full hypertext help system. 

3.3.1    TAU Architecture 

Figure 5 shows an overview of the pC++ programming environment. The pC++ 
compiler front end takes a user program and pC++ class library definitions 
(providing predefined collection types) and parses them to create a program 
data base, or PDB. The PDB is accessed via the Sage++ library. 

Through command line switches, the user can choose to compile a pC++ 
program for profiling or tracing. In either case, the instrumentor is invoked 
to add the necessary instrumentation to the PDB (Section 3.4.6). The pC++ 
back end transforms the PDB into plain C++ with calls into the pC++ runtime 
system. This C++ source code is then compiled and linked by the C++ compiler 
on the target system. 

The compilation and execution of pC++ programs can be controlled by 
Cosy (COmpile manager Status displaY). This tool provides a user-friendly 
and convenient way of compiling and linking pC++ programs (Figure ll4). 
Through a graphical interface, the user first selects the parallel machine on which 

4Figures 10 to 26 appear in Section 3.5 
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Figure 5: TAU Tools Architecture 

the application is to be compiled and run. Parameters and options for compiling 
and running are chosen through pull-down menus. Cosy automatically connects, 
if necessary, to the remote machine, executes the appropriate commands, and 
displays the resulting output in a scrollable window. 

The program and performance analysis environment is shown in the bottom 
right corner of Figure 5. It includes the TAU toolset, instrumentation, profiling, 
tracing, and breakpointing support, and interfaces to performance analysis tools 
developed by other groups [18, 23, 27]. The TAU tools are described in more 
detail in Section 3.4. 

3.3.2    TAU Implementation 

The TAU architecture defines how the tools interoperate and fit into the pC+4- 
programming system. This section discusses two components of TAU that sup- 
port this: global features and well-defined internal tool interfaces. 
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3.3.3 Global Features 

Global features are a natural extension to the "click-for-source" feature found in 
some other parallel program analysis tools. But whereas these tools only allow 
users to find the source code of elements in the performance views (e.g., show the 
code containing the send or receive function call for a message transmission), 
TAU allows users to click on anything which represents an function or class in 
any tool, and automatically updates all tool display to show information about 
the selected object (Figure 6). 

For example, suppose a user is looking at the execution profile for her ap- 
plication, and wonders why a specific function is taking so much time. Clicking 
either on the function's name label or on the colored bar showing the execution 
time used by the function, will invoke the global feature select-function. This 
calls the Tcl/Tk function globalSelectFunc, shown in the middle of Figure 6, 
with the unique identifier of the selected function as a parameter. This then 
calls localSelectFunc, which causes the tool to show more specific informa- 
tion about the selected function. Next, each of the tools known to implement 
the global feature is checked to see if it is running. If it is, a message is sent 
to invoke localSelectFunc with the same function name as an argument. In 
Figure 6, this causes the file browser to show the source code of the selected 
function, and the callgraph browser to show all of its call sites. The same effect 
would have been achieved if the user had clicked on a function in either the 
source code browser or the callgraph display. 

This implementation has several strengths: 

• The use of global features makes it possible to implement the TAU en- 
vironment as hypertools, instead of as a single huge program. Hence, 
the individual tools can be kept small, which simplifies maintenance and 
debugging. It also makes tools easier to re-use in different contexts or 
environments. 

• The environment can easily be extended. A new tool only has to im- 
plement those global features it needs or is able to support, then bind 
invocation of those features to appropriate elements of its graphical user 
interface and add itself to the global list of tools supporting that feature. 

• The use of high-level interprocess communication (e.g., Tk's send) allows 
a very simple implementation. It is also quite portable, as there are now 
Tk modules for Scheme and Perl, and a C interface for writing libraries. 

3.3.4 Internal Tool Interfaces 

Figure 7 shows the internal implementation of the TAU's static analysis tools: 
the source code browser Fancy, the callgraph browser Cagey, and the class 
hierarchy browser Classy. I DON'T SEE CLASSY IN THIS FIGURE. If a browser 
is started or switched to another user application, it invokes the object manager 
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Figure 7: TAU Internal Tool Interfaces 

and reads its output. Command line switches are used to specify the type of the 
requested information. The object manager uses the Sage++ interface to access 
the program database describing the current user application, then prints the 
requested information in an easy-to-parse ASCII format. The object manager 
reduces dependence on a particular language system by producing in a generic 
format where possible, and enhances tool interoperability by making inter-tool 
communication more robust. For example, this architecture makes it easy to use 
TAU on a workstation to control a pC++ application running on remote parallel 
computer. In thise case, instead of launching the object manager directly, the 
TAU tools use a standard TCP/IP remote shell command. 

TAU's dynamic analysis tools are implemented in much the same way. Racy 
and Easy invoke programs to read profile data and event traces respectively, 
then parse their ASCII output. This allows TAU to be ported to other language 
systems in any of four different ways: 

1. Change the compiler of the new target environment to produce a program 
data base in the format used by Sage++. 

2. Implement that part of the Sage++ function interface used by the object 
manager for the program data base used in the new language environment. 
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3. Implement new information servers that understand the same command 
line options, and output information in the same format, as the TAU 
object manager. 

4. Change the TAU tool interfaces to the information servers so that they it 
work with the new language environment. 

As an example, TAU was ported recently to work with the HPF compiler of 
the Portland Group Inc. We used the third approach—write a new object 
manager—to port the source code and the callgraph browser, and the first 
approach—implement routines to generate TAU-compatible profile data files— 
to adapt the profile data browser. The whole port required less than one person- 
week, and shows the benefits of TAU's modular design. 

3.4    TAU Tools 

In this section, we describe the tools in the current TAU toolset5. These tools 
are available as part of the pC++ distribution and operate in any environment 
where pC++ runs. Some tools are pC++ specific, while others are could be 
applied to other language systems. As TAU was designed to support extensions 
to the toolset, new tools are continually being developed and incorporated into 
the TAU architecture. 

3.4.1    Static Analysis Tools 

An earlier version of this material was previously published in [24]. 
This material has been updated where tool features have changed 
or new tool features added. 

A major motivation for using C++ as the base for new parallel languages 
is its ability to support develoment and maintenance of large, complex applica- 
tions. However, if they are to use C++'s capabilities effectively, users must be 
given support tools which can access source code at the level of programming 
abstractions. 

TAU currently provides three tools to enable users to navigate through large 
pC++ programs: a global function and method browser called Fancy, a static 
callgraph display called Cagey, and a class hierarchy display called Classy. Since 
these tools are integrated with TAU's dynamic analysis tools, it is easy for users 
to find object-level execution information. To locate dynamic results after a 
measurement has been made, a user only has to click on the object of interest, 
such as a function name in a callgraph display. 

5A11 TAU tools have adjectives as names, so that the answer to "What is TAU?" is "TAU 
is a Cosy, Fancy, Cagey, Classy, Easy, Racy, Speedy, and Breezy parallel program analysis 
environment." 
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3.4.2 File and Source Code Browser 

Fancy (File ANd Class displaY) lets a user browse through the files and classes 
making up her application. The main window displays listboxes showing the 
source files used and the classes defined (Figure 12). Selecting an item in either 
listbox displays all global functions defined for the selected file, or all methods 
of the selected class. 

Selecting a global function or a class method causes the corresponding source 
code to be displayed in a separate viewer window (Figure 13). The header and 
body of the currently selected routine, as well as functions and methods which 
are called from that routine, are highlighted using different colors. Routines 
and class definitions can be selected by clicking on the appropriate names. 

3.4.3 Callgraph Browser 

Cagey (CA11 Graph Extended displaY) shows the static callgraph of the user's 
application (Figure 14). It uses Sage++ to determine the callgraph structure 
and to differentiate between global functions and class methods. Cagey helps 
users locate parts of their programs where parallelism is used by marking parallel 
routines with the string "||". As callgraphs can be quite large, Cagey allows users 
to control how far a callgraph is expanded. 

Cagey supports two graph layout modes: extended and compact. In compact 
mode, each function or method is represented by a single node. If a function 
calls another more than once, the connecting arc is labeled with the number of 
calls. This mode works well for structured or regular codes. In expanded mode, 
Cagey draws a node for each individual function or method call; the resulting 
graph is always a tree. Figure 14 shows a callgraph in compact mode. 

3.4.4 Class Hierarchy Browser 

Classy (CLASS hierarchY browser) is a class hierarchy browser for programs 
written in C++ and derivatige languages such as pC++. Classes which have 
no base class (called level 0 classes) are shown on the left side of the display 
window (Figure 15). Subclasses derived from level 0 classes are shown in the 
next column to the right, and so on. Like Cagey, Classy lets the user choose 
the level of detail in the class hierarchy display by allowing folding or expansion 
of subtrees in the graph. Classy also allows quick access to key properties of a 
class, such as data members. Finally, Classy marks collections by putting the 
string "||" before their names. 

3.4.5 Dynamic Analysis Tools 

An earlier version of this material was published in [24]. 

Static analysis tools provide high-level views of a program's structure; dy- 
namic analysis tools capture information about the program's execution and 
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correlate it with those high-level views so that users can find correctness and 
performance problems. TAU supports dynamic analysis in three ways: profiling, 
which computes statistical information to summarize program behavior; trac- 
ing, which portrays execution behavior as a sequence of abstract events that can 
be used to determine various properties of time-based behavior; and breakpoint 
debugging which allows a user to stop the program at selected points and query 
the program's state. These are supported by an execution profile data browser 
called Racy, an event trace browser called Easy, and a barrier breakpoint de- 
bugger called Breezy. 

3.4.6    Program Instrumentation 

An earlier version of this section was published in [22]. 

All three analysis modes use instrumentation to capture runtime data. The 
program transformations needed for this are done at the language level to ensure 
portability. One problem this approach faces is to ensure that code to profile 
function exits is executed as late as possible. Since a function can return an 
arbitrarily-complex expression, correct profiling instrumentation must somehow 
extract the expression from the return statement, compute its value, execute the 
profiling exit code, and only then return the expression result. Matters become 
even more complicated when we consider multiple exit points. 

This is a good example of how we can leverage our language environment 
for tool implementation. The trick is very simple: we declare a special Profiler 
class that has a constructor and a destructor, but no other methods. A variable 
of this class is then declared in the first line of each function that has to be 
profiled, as shown below for function bar. 

class Profiler { 

char* name; 

public: 
ProfilerCchar *n) {name=n; code_enter(n);} 

"ProfilerO {code_exit(name);} 

}: 

void barO { 
Profiler tr("bar");  // Profiler variable 
II body of bar 

} 

The variable tr is created and initialized by its constructor each time control 
flow reaches its definition, and destroyed by its destructor on exit from its block. 
The C++ compiler automatically rearranges the code and inserts destructor 
calls to ensure correct behavior no matter how the scope is exited. 

We use the Sage++ toolkit to manipulate pC++ programs to insert such 
instrumentation at the beginning of each function.   The user can selectively 
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specify the set of functions to instrument using an instrumentation command 
file. Filenames, classes, and functions can be specified as regular expressions, 
and included or excluded based on their name, source file, or class. Functions 
can also be selected by their size (measured in number of statements and/or 
number of function class), by whether they are inline functions, and by their 
position in the static callgraph. If an instrumentation command file is not 
given, every function in the pC++ input files is profiled by default. A graphical 
interface to allow to control the instrumentation process for TAU is not yet 
available. 

3.4.7    Portable Profiling for pC++ 

The data captured by the entry and exit instrumentation described above can 
be used to calculate the number of times a function is called and the execution 
time it consumes. For pC++ we capture performance profiles for thread-level 
functions, collection class methods, and runtime system routines. The data we 
capture includes activation counts, execution times, and, in the case of collec- 
tions, referencing information. 

Our approach to profiling has two basic advantages. First, instrumenting at 
the source code level makes it very portable. Second, different implementations 
of the profiler can be easily created by providing different code for the construc- 
tor and destructor. This makes instrumentation very flexible. Currently, we 
have implemented two versions of the profiler: one based on direct profiling, 
and one which calls event logging functions from the pC++ library. Other pro- 
filing alternatives could be implemented in the same way. Instrumented version 
of the pC++ class libraries support profiling of runtime system functions and 
collection access. 

If a pC++ program was compiled for direct profiling, executing it produces 
a profile data file for each node. This profile data can be browed using either 
Pprof, a parallel profile tool similar to UNIX Prof, or Racy (Routine and data 
ACcess profile displaY). Racy, shown in Figure 16, gives a quick overview of 
an applications' execution by summarizing both function and collection access 
performance. The function profile summary presents a bargraph with one line 
per processor, showing where program time was spent on that processor. In 
addition, the mean, maximum, and minimum values are shown on top of the 
graph. Detailed profiles for each node can be displayed in a variety of formats. 

The collection access data profile summary shows access information for 
pC++ collections. A bar graph shows the percentage of collection accesses that 
were local or remote. By clicking on the collection name, the user can get a 
per-node profile of this data. (Figure 21). 

3.4.8    Event Tracing for pC++ 

Some of this material was previously published in [22]. 
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In addition to profiling, we have implemented a system for tracing pC++ 
program events. Events are stored in a buffer on each node, which is written 
to disk when it is full or when the program ends. Each event record includes 
the event type, the originating processor, a high-resolution timestamp, and an 
optional parameter. Each event is assigned an event class; when a program is 
compiled for tracing, particular event classes can be activated or deactivated 
to allow selective recording. The instrumentation required by tracing is imple- 
mented in the same way as profiling instrumentation. 

EC-BASIC 

EC-KERNEL 

EC-RUNTIME 

EC-TIMER 
ECTRACER 

EC-PROFILER 

EC-USER1 
EC.USER4 

Basic runtime events like begin and end of the whole pro- 
gram andth^user^smajnjiimctimi^ 
Creation and deletion of collections, collection element 
access. 
Entry and exit of every pC++ runtime function including 
barriers, message send and receives, polling. Mainly used 
for debugging. 
Calls to the pC++ timer and clock package. 
Functions of the software event tracing package itself like 
Init, Close, and FlushBuffer. 
User function entry and exit points.  Events of this class 
are automatically inserted by the pC++ instrumentor. 
Available to the user for manually inserted event recording 
calls. 

Table 5: pC++ Event Classes 

We have also implemented several utilities for merging event traces, for con- 
verting them to other formats, such as Pablo's SDDF [27] or Upshot's ALOG 
[18], and for analyzing and visualizing traces using the Simple environment or 
other tools based on the Tdl/Poet interface [23]. 

Easy (Event And State displaY) is an Upshot-like event and state display 
tool. It displays states and events on an X-Y graph, allowing more detailed 
access to event data when necessary. The Y axis shows individual processors, 
while the X axis shows elapsed time. A particular event or state can be examined 
by clicking on the corresponding graphical object. States are displayed in such 
a way that they show when nesting occurs. WHAT IS "NESTING" IN THIS 

CONTEXT? Figure 22 shows the major phases of a pC++ program. 

3.4.9    Barrier Breakpoint Debugging 

An extended version of this section was previously published in [5]. 

We have developed a program interaction system for pC++ called Breezy 
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Figure 8: Breezy Architecture 

(BReakpoint Executive Environment for visualization and data DisplaY) [5]. 
Breezy provides the infrastructure for a client application to attach to a pC++ 
application at runtime. This partnership gives the client several capabilities: 

• The client can control the execution of the program. 

• The client can retrieve data from parallel data structures created in the 
program. 

• The client can invoke functions or methods in the parallel program. 

• The client can retrieve information about the program's execution state. 

• The client can retrieve meta-information about the program, such as type 
descriptions. 

• The client may communicate in a general way with the parallel program. 

The Breezy architecture consists of three modules (Figure 8). The Breakpoint 
Executive maintains information about the program's state, including a list of 
currently-instantiated parallel data objects. It consults the Type Module, which 
stores meta-information such as type descriptions of the parallel data structures 
or lists of all user-defined functions that can be called. 

The Breezy Access Module is currently implemented as a library of C rou- 
tines. It supports allows a client program to control the execution of the pro- 
gram, to request information about the program state, and to access program 
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data structures. For example, a client using the API can specify the program 
variable that holds the parallel data object of interest. If this object is a struc- 
tured object with fields, such as a class, the client can further specify a particular 
field. The client can then retrieve this data from all of the distributed elements 
of the parallel data object, or from a single element in that object. To serve 
requests for parallel data, the Breakpoint Executive calls access functions in 
the executing program. These access functions reside in the (modified) user 
program in order to have access to the program variables and functions, and 
are generated automatically by the Breezy instrumentation phase of the pC++ 
compiler. 

I AM TEMPTED TO CUT THIS ENTIRE LIST, EXCEPT FOR THE LAST POINT. 
Several unique features of Breezy are: ARE YOU SURE THESE ARE UNIQUE? 

• It has an easy-to-use, high-level interface. 

• 

• 

• 

• 

Its modular design allows for component re-use and clean substitution of 
new technologies (such as replacing the transport layer with CORBA/IDL[25]). 

It can be built on to achieve more complex functionality, such as compu- 
tational Steering. WHAT IS "COMPUTATIONAL STEERING" ? 

It allows the programmer to make functions available for calling by the 
client, giving the client the power to alter the course of the program or 
perform specific computations. How IS THIS DIFFERENT FROM "COMPU- 

TATIONAL STEERING" ? 

Almost all of the implementation is done in the target language. WHAT 

DOES  "ALMOST"  MEAN? 

This last point is particularly interesting because it allows client applications 
to reference data objects exactly as they were denned in the program, rather 
than at a lower level resulting from compiler transformation. Also, it means 
that a new implementation of Breezy is not required for each new architec- 
ture; because Breezy is implemented using the language, it runs everywhere the 
language does. 

3.4.10    Performance Extrapolation for pC+-(- 

An extended version of this section was previously published in [2]. 

The dynamic analysis tools already discussed enable users to investigate the 
execution behavior of pC++ programs. However, because pC+-|- programs are 
portable, users may want to develop and analyze programs that will run across 
platforms or that will run in environments different from the development envi- 
ronment. To support this type of program analysis, we implemented a perfor- 
mance extrapolation system for pC-t-+ called ExtraP, that has been integrated 
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into TAU in the guise of the Speedy tool [2]. The ExtraP/Speedy combination 
allows users to predict the performance of pC++ programs in target execution 
environments. 

The technique that we developed extrapolates the performance of an n- 
processor execution of a pC++ program from its 1-processor execution behavior. 
Important high-level events, such as remote accesses and barriers, are recorded 
and timestamped during 1-processor execution. The instrumented runtime sys- 
tem is configured so that remote accesses are treated as taking place instanta- 
neously, and so that execution threads are released from a barrier as soon as 
the last thread enters it. 

Events are then sorted on a per-thread basis, and their timestampes adjusted 
to reflect concurrent execution. This is possible because the non-preemptive 
thread package used only switches threads at synchronization points, and be- 
cause global barriers are the only form of synchronization used by pC+4- pro- 
grams. Thus, the behavior of threads between barriers is independent, and the 
sorted trace files look as if they were obtained from an n-thread, n-processor 
run. The only features these traces lack are timings for remote accesses and 
barriers. A trace-driven simulation attempts to model such features and predict 
when events would have occurred in a real n-processor execution environment. 
These extrapolated trace files are then used to obtain performance metrics for 
the pC++ program. The technique is depicted in Figure 9, and described in 
more detail in [28, 29, 30]. 

ExtraP uses pC++'s built-in event tracing system to generate the traces 
needed for the simulation. These traces can be analyzed using TAU's event 
trace browsers, and compared and validated against traces from real parallel 
executions. Actual extrapolation experiments can be controlled using Speedy 
(Speedup and Parallel Execution Extrapolation DisplaY), shown in Figure 10. 
Speedy lets users control the compilation of pC++ programs, specify parame- 
ters for the extrapolation model and the experiment, execute the experiment, 
and view the experiment results. Speedy uses Cosy to perform the necessary 
compilation, execution, trace processing, and extrapolation commands. Speedy 
also automatically keeps track of parameters by storing them in experiment de- 
scription files and manages all trace and experiment control files. Users can 
re-execute experiments, or re-use parameter specifications, by loading a former 
experiment description file into Speedy. 

3.5    Tour de TAU: The Polygon Overlay Example 

In this section, we show how the TAU environment was used to analyze the 
pC+4- implementation of the polygon overlay problem described in section 2.5. 
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Figure 10: TAU Main Control Panel 

3.5.1     Utility Tools 

When TAU is started from the command line, the TAU main control panel 
appears (Figure 10). The first line shows the host name and architecture of 
the parallel machine on which compilation and execution of the pC++ program 
will take place. The second line displays the directory where the program files 
and program database are stored. The other fields show information about the 
currently-selected user application. The last line only shows information when 
a program was compiled for profiling. The buttons at the bottom are used to 
invoke TAU's static and dynamic tools. 

JOINED TWO PARAGRAPHS TO MAKE ONE; PLEASE CHECK. The compilation 
and execution of pC++ programs can be controlled using Cosy (Figure 11). 
Cosy automatically connects to the remote machine (if necessary), executes the 
appropriate commands, and displays the resulting output. Its menu allows users 
to build and run pC++ programs, to set compilation and execution parameters, 
and to do standard tasks like cleaning up or listing the current directory. The 
run button starts the executable that was compiled last and the stop button 
terminates the currently executing command. 

Figure 11 shows the compilation and execution of the polygon overlay ex- 
ample. The version shown is being compiled for tracing; the generated event 
traces can then be viewed with Easy. As the pC++ polygon overlay program 
re-uses the original ANSI C reference program, we have to specify a list of extra 
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Figure 12: Fancy Main Window 

objects in the Build Parameters window before we can build. The user must 
supply a makefile for these objects. 

3.5.2    Static Analysis Tools 

Figure 12 shows the main window of the Fancy file and class browser. The lists of 
all files and classes are shown on the left. The files list includes the pC++ main 
program (po.pc), and pC++-specific header files like kernel.h, as well as the 
files making up the ANSI C reference implementation. The classes list includes 
pC++'s predefined collection classes (Kernel and SuperKernel) the pC++- 
supplied classes for describing the alignment and distribution of collections, and 
the user-defined collection (Overlay) and element (Patch) classes. As described 
in Section 3.4.2, selecting a file or class shows its components, as shown in 
Figure 13. 
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Figure 14 shows a Cagey callgraph view of the polygon overlay code with 
Overlay: :findOverlay expanded. In addition to allowing users to check the 
static structure of their programs, these displays are convenient navigation aids. 
As can be seen, the overlay example has a fairly simple structure, with the bulk 
of the data-parallel computation in the expanded routine. 

The class hierarchy browser, Classy, allows quick access to key properties of 
a class. pC++ collections are marked with a "||" before the name. When a class 
is selected, a member table window is displayed, which shows a detailed list of 
the class's members and their attributes (Figure 15). The word element is used 
to indicate the pC++ concept of a method of element function. As can be seen, 
the pC++ polygon overlay algorithm defines its collection class by subclassing 
from the predefined collection Superkernel. 

3.5.3    Dynamic Analysis Tools 

TAU's dynamic analysis tools help users relate dynamic measurement results to 
their original pC++ programs by presenting results in terms of pC++ language 
objects. To show how, this section shows the results of some experiments done 
on an 8-processor SGI PowerChallenge with 512 MByte of memory. As stated 
in section 2.5, the pC++ implementation of the polygon overlay problem is 
"embarrassingly parallel", so a dynamic analysis of it is not particularly exciting. 
We therefore show the dynamic behavior of the whole application, including its 
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Figure 16: Racy Main Window 

input and output phases. 
The main window of the Racy profiling tool (Figure 16) gives a quick overview 

of the application's performance by summarizing both function and collection 
access profile data. These summary displays allow us to make three important 
observations about the pC++ polygon overlay program: 

1. Processor 0 has a different behavior than all the other nodes. A closer look 
using the function legend reveals that this is because node 0 is doing all 
of the programs' I/O (in Overlay: :readMap and Overlay: :writeMap). 

2. The other processors spent about two thirds of their time waiting (in 
pC++ runtime system functions pcxxJSarrier and pcxx_Poll). 

3. The good speedup of the main algorithm (Overlay: :f indOverlay) has a 
simple explanation: from the collection summary we can see that processes 
make only local accesses to the distributed collection X, which holds the 
map data. This means that there is no communication or synchronization 
in this part of the program. 

To investigate the program further, we bring up node profiles for node 0 and 
node 1 (as a representative for the other nodes) by clicking on the labels in the 
function summary display (Figure 17).  As the behavior of node 0 is different 
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from that of the others, comparing the functions implementing polygon overlay 
is misleading if we display the execution times as percentages. We therefore 
configure the displays using the Mode and Units menus to show the time spent 
in the functions in seconds. Comparing the functions that actually implement 
overlay (overlayAreaLinked, polyArea, PolyVec2AreaLn, polyLnCons, and 
polyLn2Vec), we can now see that they use approximately the same time. 

We can make this observation even easier if we use the Value menu to config- 
ure the displays6 to show the execution time including all children (Figure 18). 
We now only have to compare the execution time for Overlay: :f indOverlay. 

We can use also a function profile display to compare the performance of a 
specific function on all nodes simply by clicking on a function name or the bar 

6 Note that we do not have to do this for every node profile window. In using the Configure 
menu in the Racy main window, we can change all displays at once. 
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Figure 19: Racy Text Node Profile 

representing the function. Figure 20 shows the time spent in Overlay:: f indOverlay 
and its children on the different nodes used for the execution of the program. 

This information lets us hypothesize that most of the waiting on processors 
1 to 7 happens during the I/O phase on processor 0. Simple profiling does not 
allow us to verify our hypothesis, but we can do this very easily using event 
tracing. 

After the execution of the program, we have an event trace for each node. 
Once these are merged, we can use Easy to look at the dynamic execution 
behavior of our application (Figure 22). We easily see that processors 1 to 7 are 
waiting in a barrier while node 0 is performing I/O (in Overlay:: readMap and 
Overlay: :writeMap). This confirms the hypothesis we made after profiling. 
We can also see the typical SPMD behavior of pC++ programs. Execution of a 
compiler-inserted barrier after each call to a MethodOf Element method can be 
spotted by the vertical alignment of the right ends of the arrows representing 
the pC++ runtime system function pcxx_Barrier. 

It is interesting to note that we measured the same performance behavior for 
input sizes ranging from 100 to 100,000 polygons. The ratio between the time 
needed for I/O and the time used for finding the overlay was roughly constant, 
resulting in the same general execution behavior. 

The TAU barrier breakpoint debugger, Breezy, allows users to control a 
pC++ program running on a parallel machine from a remote workstation. Un- 
fortunately, the polygon overlay example is too simple to allow a full demon- 
stration of Breezy's functionality. 

Having used Cosy to compile the program for breakpointing, executing it 
automatically launches the Breezy main control panel (Figure 23). The left 
side allows the user to select the next breakpoint (i.e., barrier) or to terminate 
execution. Every time the program is stopped at a barrier, the display of active 
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collections is updated. In our example, there is only one active collection in- 
stance, Overlay<Patch> X. Selecting the collection results in a window showing 
the type of an element. Users can select one or more fields of the element class, 
and retrieve data from these fields to pipe into a visualization program. 

MAJOR SURGERY ON THIS PARAGRAPH. Because the pC++ polygon overlay 
program re-uses the original ANSI C code to perform local node calculations, 
the (Overlay<Patch> X) collection elements only contain pointers to locally- 
allocated map data. Breezy is currently unable to reference such data; this 
feature will be added in the next TAU release. 

3.5.4    Performance Extrapolation 

The use of ExtraP/Speedy to estimate the performance of the polygon overlap 
problem proved to be more interesting than trace analysis. We used a Hewlett- 
Packard workstation to predict the performance of the polygon overlay code on 
our SGI PowerChallenge machine. We ran an n-threaded version of the code 
(n = 1,2,4,8,16) on our workstation, collecting event traces as described in 
Section'3.4.10. We then set execution environment parameters to correspond 
to the SGI machine and observed the performance behavior. The maps used in 
these experiments had approximately 25,000 polygons. 

The Speedy main control window (Figure 24) is launched by clicking the 
Speedy button on the TAU main control panel. We build a trace-generating 
pC++ executable by selecting the Compile button of the main Speedy window; 
Speedy then uses Cosy to execute the necessary commands. We then specify the 
parameters for the experimental run. Clicking on varying parameter 1 gives 
us a parameter menu, from which select and modify Number of Processors. 

The Speedy parameter viewer (Figure 25) is used to specify the neces- 
sary parameters for the ExtraP simulation phase of the experiment. As the 
Overlay :f indOverlay code in the pC++ implementation does not involve any 
communication or synchronization, the only one of the 25 ExtraP parameters 
which is significant is MipsRatio, simulation (HP) and actual (SGI) machine is 
MipsRatio, which is the relative speed of the CPU of the target machine (SGI) 
to that of the simulation machine (HP). We ran the sequential polygon overlay 
code on both platforms to determine this ratio. Because the polygon overlay 
code involves only integer arithmetic, the time on the 99MHz HP-PA chip (1.68 
seconds) was close to that on the 75MHz R8000 (1.53 seconds). We therefore 
set MipsRatio to 0.91. 

Clicking Speedy's Run Experiment button starts the experiment. After each 
iteration of the extrapolation, the execution time graph in the Speedy main 
window is updated, which allows the user to see, and control, the evolution of 
the experiment. This is important for long-running experiments: if something 
goes wrong, it can be stopped early. Clicking on the data points in the graph 
displays individual values, a table can also be generated (Figure 26b). If the 
varying parameter is Number of Processors, as in our example, a speedup 
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display is also available (Figure 26a). 
Speedy uses one of the pC++ runtime system timers to determine which 

part(s) of the program to measure. This allows the user to choose whether to 
measure the whole program or only parts of it during a performance extrapola- 
tion experiment. In our example, we put timer calls around the Overlay:: f indOverlay 
method only. The results show almost linear speedup for this part of the code. 

Number of Processors 
1 2 4 8 16 

estimated 1.56 0.83 0.46 0.29 0.21 
measured 1.38 0.84 0.51 0.39 - 

Table 6: Execution Time in Seconds 

As Speedy is fully integrated with TAU, users can employ other TAU tools 
to verify extrapolation results, or compare them with actual measurements. 
Table 6 lists both measured and estimated execution times for our SGI Power- 
Challenge. As can be seen, the two sets of values are reasonably close. 

3.6    Critique 

In this section, we evaluate TAU based on its implementation on a large number 
of parallel platforms. 

• A parallel programming environment should support the full development 
circle. The TAU environment currently supports compilation and exe- 
cution control, static and dynamic program and performance analysis, 
debugging, and performance extrapolation. One area which is not yet 
supported is program development. Currently, we are working on an ed- 
itor which would be integrated with the other TAU tools. This would 
replace the Fancy source code viewer. One would use the static browsers 
to "jump" to a function, method, or class in the editor. If an error oc- 
curred during compilation with Cosy, clicking on the error message would 
jump to the corresponding source code line. 

Also, TAU currently only supports function and class symbol lookup. We 
are planning to enhance the TAU browsers to support generic symbol 
browsing. This will require support for portable access to symbol table 
information, and tracking symbols between the parallel language level and 
the intermediate (compiler-generated) language representations. 

• Debugging for parallel programs is very important. The functionality of 
the Breezy debugger is too restricted. We are currently implementing a 

.  new event- and state-based debugging interface. It will form the basis for 
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a number of high-level debugging tools, including traditional debuggers, 
data extraction and visualization tools, and interactive profiling tools, 
as well as for novel application-specific debuggers. It will be realized as 
a very-high-level multithreaded language on top of a simple but general 
event-based debugging API. 

• Portability is a design issue. Portability is difficult to achieve, especially 
on parallel machines, where operating systems and C++ compilers are 
not as standard as they appear. Even simple things like getting a pro- 
gram to start executing in parallel is different on all machines. Portability 
must be considered from the very beginnings of a design; it cannot be 
achieved by first implementing a prototype for a specific platform, and 
then trying to port that prototype to different platforms. We believe we 
have solved these problem in TAU, which, like pC++, runs on every ma- 
jor commercial parallel computer and UNIX workstation and work with 
every major C++ compiler. This was achieved through a combination of 
software engineering methods and meticulous attention to detail in our 
initial designs. 

• C++ is a very complex language. Writing commercial-quality tools for a 
C++-based parallel language as a University research project is almost 
impossible. For example, even simple things like a generation of the ap- 
plication's callgraph is complex, in comparison to older languages like 
Fortran or C because of the need to handle constructors and destructor 
hierarchies, operators, virtual functions, etc. 

3.7    Conclusion and Future Work 

The current TAU system has been highly successful in meeting the program 
analysis requirements of the pC++ language system. However, TAU also es- 
tablished a methodology and architecture for building program analysis envi- 
ronments that we hope to extend in three ways: 

Support a wider range of programming models. TAU's tools currently focus on 
the data-parallel style of programming embodied in pC++ and HPF. That 
style makes program analysis relatively easy: data-parallel programs typ- 
ically have simple, uniform communication patterns and frequent, global 
synchronization points. Once the model is relaxed to allow task par- 
allelism or concurrent composition of data-parallel operations, program 
analysis becomes harder. Tools must contend with asynchrony, irrepro- 
ducible behavior, the lack of consistent, global states, and complex pat- 
terns of process interaction. 

To support these programming models, TAU will be extended to incorpo- 
rate a replay mechanism. This will make it possible to repeat executions, 
instrumenting the code to any required level of detail. It will also make 
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it possible to decide post mortem whether more sophisticated models of 
observability are needed. All existing TAU tools will be modified to work 
transparently during replay. 

Replay, however, is only one approach, and is quite expensive in tracing 
overhead. TAU should also support more limited models of observability, 
giving users a choice of a range of tools. For example, one level of support 
might provide tracing facilities sufficient for replay, another sufficient for 
animation of specified data structures, another for logging procedure calls, 
etc. As a consequence, Breezy (or its successor) will have to be updated 
to support multiple notions of a breakpoint. The user's choice of tools 
and options will determine the requirements for observability that are 
automatically supported with instrumentation. 

Increase functionality. The generalization of programming model will require 
new, more powerful tools, particularly for debugging. Programs with com- 
plex inter-process interactions will require a multi-level debugging strat- 
egy, in which event-based techniques are initially used to find gross pat- 
terns of process interactions, and state-based techniques predominate after 
the focus of attention has been narrowed to a single process or small set 
of processes [20]. Initial use of event-based techniques focuses the user's 
attention on manageable portions of the state space and provides the basis 
for establishing consistent, meaningful, global breakpoints. Event-based 
techniques can incorporate replay mechanisms that support reproducible 
execution and logical time transformations to filter out perturbations due 
to asynchrony. 
State-based techniques, on the other hand, allow the user to examine an 
execution to an arbitrary level of detail, and often make it easier to relate 
errors to source code. The event- and state-based tools that we are de- 
veloping will be interoperable. Our current prototype demonstrates that 
this interaction can be quite powerful: it allows the user to set consistent 
breakpoints that are meaningful in the context of her ongoing event-based 
analysis. Often, these breakpoints would have been difficult or even im- 
possible to set with conventional mechanisms [20]. 

We will need to develop appropriate abstractions to include event-based 
tools in our environment. Most existing tools operate at a very low level, 
basing their models on explicit read and write operations that are not 
meaningful to the pC-f + or HPF programmer. 

Maintain tight integration with the language system despite increasingly ag- 
gressive program transformations and optimizations. Finding appropriate 
abstractions for event-based tools is just one instance of a more general 
problem for parallel program analysis environments: the trend toward 
higher levels of programming abstraction coupled with generation of ever- 
more-efficient target code, means that tools must become increasingly so- 
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phisticated if they are to relate execution to source code. The current 
implementation of pC++ does not optimize aggressively, but as the next 
generation parallel C++ language system, HPC++, is developed, TAU 
will have to provide more assistance in maintaining the source/execution 
correspondence. Our approach will be similar to that of [1], in which the 
compiler provides performance tools with extensive information on the 
mapping between source and SPMD codes. For debugging, however, we 
will have to go further, enabling the tools to interpret not just performance 
statistics, but detailed data manipulations and control flow in terms of the 
initial, high-level program. 
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ATTN?  TOM MITCHELL 
COMPUTER SCIENCE DEPARTMENT 
PITTSBURGH, PA 15213-3890 

CARNEGIE MELLON UNIVERSITY 
ATTN:  MARK CRAVEN 
COMPUTER SCIENCE DEPARTMENT 
PITTSBURGH, PA 15213-3890 

UNIVERSITY OF ROCHESTER 
ATTN:  JAMES ALLEN 
DEPARTMENT OF COMPUTER SCIENCE 
ROCHESTER, NY 14627 

TEXTWISE, LLC 
ATTN:  LIZ LIODY 
2-121 CENTER FOR SCIENCE £ TECH 
SYRACUSE, NY 13244 

WRIGHT STATE UNIVERSITY 
ATTN:  DR. 8SÜCE 8ERRA 
DEPART OF COMPUTER SCIENCE £ SNGIN 
DAYTON, OHIO 45435-OQQt 

UNIVERSITY OF FLORIDA 
ATTN:  SHARMA CHAKRAVARTHY 
COMPUTER & INFOR SCIENCE DEPART 
GAINESVILLE, FL 32622-6125 

KESTREL INSTITUTE 
ATTN:  DAVID ESPINOSA 
3260 HILLVISW AVENUE 
PALO ALTO, CA 94304 

STOLLER-HENKE ASSOCIATES 
ATTN:  T.J, GOAN 
2016 3ELLE MONTI AVENUE 
3ELM0NT, CA 94002 

USC/INFORMATION SCIENCE INSTITUTE 
ATTN:  DR. CARL KESSELMAN 
11474 ADMIRALTY WAY, SUITE 1001 
MARINA DEL REY, CA 90292 
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MASSACHUSETTS INSTITUTE OF TECH 
ATTN:  DR. MICHAELS SIEGEL 
SLOAN SCHOOL 
77 MASSACHUSETTS AVENUE 
CAMBRIDGE, MA 02139 

USC/INFORMftTIQN SCIENCE INSTITUTE 
ATTN:  DR. WILLIAM SWARTHOUT 
11474 ADMIRALTY WAY» SUITE 1001 
MARINA DEL REY, CA 90292 

STANFORD UNIVERSITY 
ATTN:  DR. GIO WIEDERHOLD 
957 SIERRA STREET 
STANFORD 
SANTA CLARA COUNTY, CA 94305-4125 

NCCQSC RDTE DIV 044208 
ATTN:  LEAH WONG 
53245 PATTERSON ROAD 
SAN DIEGO, CA 92152-7151 

SPAWAR SYSTEM CENTER 
ATTN:  LES ANDERSON 
271 CATALINA 8LVD, CODE 413 
SAN DIEGO CA 92151 

GEORGE MASON UNIVERSITY 
ATTN:  SUSHIL JAJODIA 
ISSE DEPT 
FAIRFAX, VA 22030-4444 

DIRNSA 
ATTN:  MICHAEL R. WARE 
DOD, NSA/CSS CR23) 
FT. GEORGE G. MEADE «D 20755-6000 

OR. JIM RICHARDSON 
3660 TECHNOLOGY DRIVE 
MINNEAPOLIS, MN 55418 

LOUISIANA STATE UNIVERSITY 
COMPUTER SCIENCE DEPT 
ATTN: Q^.   PETER CHEN 
257 COATES HALL 
BATON ROUGE, LA 70803 
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INSTITUTE OF TECH DEPT OF COMP SCI 

ATTN: DP. JAIDEEP SRIVASTAVA 
4-192 EE/CS 
200 UNION ST SE 
MINNEAPOLIS, MN 55455 

GTE/S3N 
ATTN:  MAURICE M. MCNEIL 
9655 GPANITE RIDGE DRIVE 
SUITE 245 
SAN DIEGO, CA 92123 

UNIVERSITY OF FLORIDA 
ATTN:  DR. SHARMA CHAKRAVARTHY 
E470 CSE BUILDING 
GAINESVILLE, FL 32611-6125 
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